UT DALLAS Erik Jonsson School of Engineering & Computer Science

Secure Data Storage and Retrieval
in the Cloud

FEARLESS engineering \UT|D]

Motivating Example
Current work in related areas

Our approach
— Contributions of this paper
— System architecture

Experimental Results
Conclusions and Future Work

FEARLESS engineering \UT|D]

Motivating Example

« Current Trend: Large volume of data generated by
Twitter, Amazon.com and Facebook

 Current Trend: This data would be useful if it can
be correlated to form business partnerships and
research collaborations

« Challenges due to Current Trend: Two obstacles
to this process of data sharing
— Arranging a large common storage area
— Providing secure access to the shared data

FEARLESS engineering \UT|D]

Motivating Example

« Addressing these challenges:

— Cloud computing technologies such as Hadoop HDFS
provide a good platform for creating a large, common
storage area

— A data warehouse infrastructure such as Hive provides a
mechanism to structure the data in HDFS files. It also
allows adhoc querying and analysis of this data

— Policy languages such as XACML allow us to specify
access controls over data

— This paper proposes an architecture that combines
Hadoop HDFS, Hive and XACML to provide fine-grained
access controls over shared data

FEARLESS engineering \UT|D]

Current Work

 Work has been done on security issues with cloud
computing technologies

— Hadoop v0.20 proposes solutions to current security
problems with Hadoop

— This work is In its inception stage and proposes simple
access control list (ACL) based security mechanism

« Qur system adds another layer of security above
this security

* As the proposed Hadoop security becomes robust it
will only strengthen our system

FEARLESS engineering \UT|D]

Current Work

« Amazon Web Services (AWS) provide a web
services infrastructure platform in the cloud

« To use AWS we would need to store data in an
encrypted format since the AWS infrastructure is in
the public domain

« Our system is “trusted” since the entire infrastructure
IS in the private domain

FEARLESS engineering \UT|D]

Current Work

 The Windows Azure platform is an Internet-scale
cloud computing services platform

 This platform s suitable for building new
applications but not to migrate existing applications

« We did not use this platform since we wanted to port
our existing application to an open source
environment

« We also did not want to be tied to the Windows
framework but allow this system to be used on any
platform

FEARLESS engineering \UT|D]

Contributions of this paper

« Create an open source application that combines
existing open source technologies such as Hadoop
and Hive with a policy language such as XACML to
provide fine-grained access control over data

 Ensure that the new system does not create a
performance hit when compared to using Hadoop
and Hive directly

FEARLESS engineering \UT|D]

System Architecture

[- CREATE-LOAD TABLE QUERY I
| e - CREATE VIEW QUERY |
| — SELECT/INSERT QUERY |

Web Application
N

-

| Query | |Adm|n|strat|on|
T —\\

I

1

| | ZQL Parser | 1
1 :

¥ ; v
| XACNML Policy Builder | | XACML Policy Evaluator | Control
T H 0

Access

y Layer
Basic Query Rewriting

o
z
<
n

FEARLESS engineering

System Architecture - Web Application Layer

 This layer is the only interface provided by our
system to the user

* Provides different functions based on a user’s
permissions
— users who can query the existing tables/views

— users who can create tables/views and define policies on
them in addition to being able to query

— an “admin” user who in addition to the above can also
assign new users to either of the above categories

« We use the salted hash technique to store
usernames/passwords in a secure location

FEARLESS engineering \UT|D]

System Architecture - ZQL Parser Layer

« ZQL is a Java based SQL parser

 The Parser layer takes as input a user query and
continues to the Policy layer if the query Iis
successfully parsed or returns an error message

« The variables in the SELECT clause are returned to
the Web application layer to be used in the results

* The tables/views in the FROM clause are passed to
the Policy evaluator

« The parser currently supports SQL DELETE,
INSERT, SELECT and UPDATE statements

FEARLESS engineering \UT|D]

System Architecture - XACML Policy Layer

« XACML Policy Builder

— Tables/Views are treated as resources for building policies
— We use a table/view to query-type mapping
table1 SELECT INSERT
viewl SELECT
to create policies using Sun’s XACML implementation

— Since a view is constructed from one or more tables, this
allows us to define fine-grained access controls over the
data

— A user can upload their own pre-defined policies or have
the system build the policy for them at the time of
table/view creation

FEARLESS engineering \UT|D]

System Architecture - XACML Policy Layer

« XACML Policy Evaluator
— Use the query-type to user mapping
SELECT user1 user2
INSERT useri1 user3
to extract the kinds of queries that a user can execute

— Use Sun’s implementation to verify if a given query-type
can be executed on all tables/views that are defined in any
user query

— If permission is granted for all tables/views, the query is
processed further, else an error is returned

— The policy evaluator is used during query execution as
well as during table/view creation

FEARLESS engineering \UT|D]

System Architecture - Basic Query Rewriting Layer

 Adds another layer of abstraction between a user
and HiveQL

 Allows a user to enter SQL queries that are rewritten
according to HiveQL’s syntax

« Two simple rewriting rules in our system:
— SELECT a.id, b.age FROM a, b;
— SELECT a.id, b.age FROM a JOIN b;
— INSERT INTO a SELECT * FROM b;
= INSERT OVERWRITE TABLE a SELECT * FROM b;

FEARLESS engineering \UT|D]

System Architecture - Hive Layer

* Hive is a data warehouse infrastructure built on top
of Hadoop

« Hive allows us to put structure on files stored in the
underlying HDFS as tables/views

« Tables in Hive are defined using data in HDFS files
while a view is only a logical concept in Hive

 HiveQL is used to query the data in these
tables/views

FEARLESS engineering \UT|D]

System Architecture - HDFS Layer

 The HDFS is a distributed file system designed to
run on basic hardware

* In our framework, the HDFS layer stores the data
files corresponding to tables created in Hive
« Security Assumption

— Files in HDFS can neither be accessed using Hadoop’s
web interface nor Hadoop’s command line interface but
only using our system

FEARLESS engineering \UT|D]

Experiments and Results

« Two datasets

— Freebase system - an open repository of structured data
that has approximately 12 million topics

— TPC-H benchmark - a decision support benchmark that
consists of a typical business organization schema

* For Freebase we constructed our own queries while
for TPC-H we used Q1, Q3, Q6 and Q13 from the 22
benchmark queries

« Tested table loading times and querying times for
both datasets

FEARLESS engineering \UT|D]

Experiments and Results

« Qur system currently allows a user to upload files
that are at most 1GB in size

« All loading times are therefore restricted by the
above condition

* For querying times with larger datasets we manually
added the data in the HDFS

 For all experiments XACML policies were created in
such a way that the querying user was able to
access all the necessary tables and views

FEARLESS engineering \UT|D]

Experiments and Results - Freebase

 Loading time of our

CREATE and LOAD Query system versus Hive s

| —moptcatonting| similar for small sized
tables

 As the number of tuples
Increases our system gets

’ _ slower

oM oM o iem This time difference is
Samaeriet Splestiy attributed to data transfer

through a Hive JDBC

connection to Hadoop

30

20

15+

10

Time in Seconds

FEARLESS engineering \UT|D]

0.90

0.85 1
0.80 -
0.75 1
0.70
0.65 1
0.60
0.55-
0.50 1
0.45
0.40

Time in Seconds

Experiments and Results - Freebase

SELECT * FROM Query

—a— Application Time
— ® -Hive Time I

0.‘IIM I O.éM ' O.éM ' 1.6|7M
Number of Tuples (N)

FEARLESS engineering

« Our running times are
slightly faster than Hive

 This is because of the time
taken by Hive to display
results on the screen

« Both running times are fast

because Hive does not
need a Map-Reduce |job
for this query, but simply
returns the entire table

(UT|D]

Experiments and Results - Freebase

Query System Time |Hive Time

(sec) (sec)

SELECT name, id FROM

Person LIMIT 100: 2r.1 28.4

SELECT id FROM Person

WHERE name=‘Frank Mann’ 30.2 30.5

LIMIT 100:;

CREATE VIEW Person_View

AS SELECT name, id FROM 0.19 0.11

Person;

FEARLESS engineering \UT|D]

Experiments and Results - TPC-H

120 CREATE and LOAD "Customer" , CREATE and LOAD "Supplier"
1 |—=— Application Time 1 1 |—=— Application Time
100 4 [~ ® -Hive Time _ » 6 |- = -Hive Time
[72)] o] 1
2 s0- S 51
(o} o 1
) T D 4.
Q g0- /2]
w = ;
c i =
; 40 - qE;]
E] £ 5
= 20 =
= 20]
- 1_
0 - 1
0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Scale Factor (SF) Scale Factor (SF)

« Similar to the Freebase results, our system gets
slower as the number of tuples increases

« The trend iIs linear since the tables sizes Increase
linearly with the Scale Factor

FEARLESS engineering \UT|D]

Experiments and Results - TPC-H

Query Scale System Time | Hive Time
Factor (SF) |(sec) (sec)
100 605.24 590.66
Q6 300 1815.45 1806.4
1000 6240.33 6249.68
100 1675.19 1670.77
Q3 300 7532.23 7511.52
1000 61411.21 61390.71

FEARLESS engineering

(UT|D]

Experiments and Results - TPC-H

Query |Scale System Time |Hive Time
Factor (SF) |(sec) (sec)
100 870.70 847.52
Q13 300 1936.35 1910.19
1000 7322.54 7304.39
100 1210.04 1209.79
Q1 300 5407.14 9411.62
1000 42780.67 42768.83

FEARLESS engineering

(UT|D]

Conclusions

* A system was presented that allows secure sharing
of large amounts of information

 The system was designed using Hadoop and Hive
to allow scalability

« XACML was used to provide fine-grained access
control to the underlying tables/views

- We have combined existing open source
technologies in a unique way to provide fine-grained
access control over data

 We have ensured that our system does not create a
performance hit

FEARLESS engineering \UT|D]

« Extend the ZQL parser with support for more SQL
keywords

« Extend the basic query rewriting engine into a more
sophisticated engine

« Implement materialized views in Hive and extend
HiveQL with support for these views

« Extend the simple security mechanism with more
query types such as CREATE and DELETE

« Extend this work to include public clouds such as
Amazon Simple Storage Services

FEARLESS engineering \UT|D]

