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Motivating Example

• Current Trend: Large volume of data generated by
Twitter, Amazon.com and Facebook

• Current Trend: This data would be useful if it can
be correlated to form business partnerships and
research collaborations

• Challenges due to Current Trend: Two obstacles
to this process of data sharing
– Arranging a large common storage area

– Providing secure access to the shared data
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Motivating Example

• Addressing these challenges:

– Cloud computing technologies such as Hadoop HDFS

provide a good platform for creating a large, common

storage area

– A data warehouse infrastructure such as Hive provides a

mechanism to structure the data in HDFS files. It also

allows adhoc querying and analysis of this data

– Policy languages such as XACML allow us to specify

access controls over data

– This paper proposes an architecture that combines

Hadoop HDFS, Hive and XACML to provide fine-grained

access controls over shared data
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Current Work

• Work has been done on security issues with cloud
computing technologies

– Hadoop v0.20 proposes solutions to current security

problems with Hadoop

– This work is in its inception stage and proposes simple

access control list (ACL) based security mechanism

• Our system adds another layer of security above
this security

• As the proposed Hadoop security becomes robust it
will only strengthen our system
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Current Work

• Amazon Web Services (AWS) provide a web
services infrastructure platform in the cloud

• To use AWS we would need to store data in an
encrypted format since the AWS infrastructure is in
the public domain

• Our system is “trusted” since the entire infrastructure
is in the private domain
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Current Work

• The Windows Azure platform is an Internet-scale
cloud computing services platform

• This platform is suitable for building new
applications but not to migrate existing applications

• We did not use this platform since we wanted to port
our existing application to an open source
environment

• We also did not want to be tied to the Windows
framework but allow this system to be used on any
platform
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Contributions of this paper

• Create an open source application that combines
existing open source technologies such as Hadoop
and Hive with a policy language such as XACML to
provide fine-grained access control over data

• Ensure that the new system does not create a
performance hit when compared to using Hadoop
and Hive directly
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System Architecture
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System Architecture - Web Application Layer

• This layer is the only interface provided by our
system to the user

• Provides different functions based on a user’s
permissions
– users who can query the existing tables/views

– users who can create tables/views and define policies on 
them in addition to being able to query

– an “admin” user who in addition to the above can also 
assign new users to either of the above categories

• We use the salted hash technique to store
usernames/passwords in a secure location
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System Architecture - ZQL Parser Layer

• ZQL is a Java based SQL parser

• The Parser layer takes as input a user query and
continues to the Policy layer if the query is
successfully parsed or returns an error message

• The variables in the SELECT clause are returned to
the Web application layer to be used in the results

• The tables/views in the FROM clause are passed to
the Policy evaluator

• The parser currently supports SQL DELETE,
INSERT, SELECT and UPDATE statements
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System Architecture - XACML Policy Layer

• XACML Policy Builder

– Tables/Views are treated as resources for building policies

– We use a table/view to query-type mapping

table1 SELECT INSERT

view1 SELECT

to create policies using Sun’s XACML implementation

– Since a view is constructed from one or more tables, this

allows us to define fine-grained access controls over the

data

– A user can upload their own pre-defined policies or have

the system build the policy for them at the time of

table/view creation
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System Architecture - XACML Policy Layer

• XACML Policy Evaluator

– Use the query-type to user mapping

SELECT user1 user2

INSERT user1 user3

to extract the kinds of queries that a user can execute

– Use Sun’s implementation to verify if a given query-type

can be executed on all tables/views that are defined in any

user query

– If permission is granted for all tables/views, the query is

processed further, else an error is returned

– The policy evaluator is used during query execution as

well as during table/view creation
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System Architecture - Basic Query Rewriting Layer 

• Adds another layer of abstraction between a user
and HiveQL

• Allows a user to enter SQL queries that are rewritten
according to HiveQL’s syntax

• Two simple rewriting rules in our system:

– SELECT a.id, b.age FROM a, b;

⇒ SELECT a.id, b.age FROM a JOIN b;

– INSERT INTO a SELECT * FROM b;

⇒ INSERT OVERWRITE TABLE a SELECT * FROM b;
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System Architecture - Hive Layer 

• Hive is a data warehouse infrastructure built on top
of Hadoop

• Hive allows us to put structure on files stored in the
underlying HDFS as tables/views

• Tables in Hive are defined using data in HDFS files
while a view is only a logical concept in Hive

• HiveQL is used to query the data in these
tables/views
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System Architecture - HDFS Layer 

• The HDFS is a distributed file system designed to
run on basic hardware

• In our framework, the HDFS layer stores the data
files corresponding to tables created in Hive

• Security Assumption

– Files in HDFS can neither be accessed using Hadoop’s

web interface nor Hadoop’s command line interface but

only using our system



FEARLESS engineering

Experiments and Results

• Two datasets

– Freebase system - an open repository of structured data 

that has approximately 12 million topics

– TPC-H benchmark - a decision support benchmark that 

consists of a typical business organization schema

• For Freebase we constructed our own queries while
for TPC-H we used Q1, Q3, Q6 and Q13 from the 22
benchmark queries

• Tested table loading times and querying times for
both datasets



FEARLESS engineering

Experiments and Results

• Our system currently allows a user to upload files
that are at most 1GB in size

• All loading times are therefore restricted by the
above condition

• For querying times with larger datasets we manually
added the data in the HDFS

• For all experiments XACML policies were created in
such a way that the querying user was able to
access all the necessary tables and views
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Experiments and Results - Freebase

• Loading time of our
system versus Hive is
similar for small sized
tables

• As the number of tuples
increases our system gets
slower

• This time difference is
attributed to data transfer
through a Hive JDBC
connection to Hadoop
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Experiments and Results - Freebase

• Our running times are
slightly faster than Hive

• This is because of the time
taken by Hive to display
results on the screen

• Both running times are fast
because Hive does not
need a Map-Reduce job
for this query, but simply
returns the entire table
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Experiments and Results - Freebase

Query System Time 

(sec)

Hive Time 

(sec)

SELECT name, id FROM 

Person LIMIT 100;
27.1 28.4

SELECT id FROM Person 

WHERE name=‘Frank Mann’ 

LIMIT 100;

30.2 30.5

CREATE VIEW Person_View 

AS SELECT name, id FROM 

Person;

0.19 0.11
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Experiments and Results - TPC-H

• Similar to the Freebase results, our system gets
slower as the number of tuples increases

• The trend is linear since the tables sizes increase
linearly with the Scale Factor
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Experiments and Results - TPC-H

Query Scale 

Factor (SF)

System Time 

(sec)

Hive Time 

(sec)

Q6

100 605.24 590.66

300 1815.45 1806.4

1000 6240.33 6249.68

Q3

100 1675.19 1670.77

300 7532.23 7511.52

1000 61411.21 61390.71
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Experiments and Results - TPC-H

Query Scale 

Factor (SF)

System Time 

(sec)

Hive Time 

(sec)

Q13

100 870.70 847.52

300 1936.35 1910.19

1000 7322.54 7304.39

Q1

100 1210.04 1209.79

300 5407.14 5411.62

1000 42780.67 42768.83
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Conclusions

• A system was presented that allows secure sharing
of large amounts of information

• The system was designed using Hadoop and Hive
to allow scalability

• XACML was used to provide fine-grained access
control to the underlying tables/views

• We have combined existing open source
technologies in a unique way to provide fine-grained
access control over data

• We have ensured that our system does not create a
performance hit
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Future Work

• Extend the ZQL parser with support for more SQL
keywords

• Extend the basic query rewriting engine into a more
sophisticated engine

• Implement materialized views in Hive and extend
HiveQL with support for these views

• Extend the simple security mechanism with more
query types such as CREATE and DELETE

• Extend this work to include public clouds such as
Amazon Simple Storage Services


