
UT DALLASUT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Secure Data Storage and Retrieval 

in the Cloud



FEARLESS engineering

Agenda

• Motivating Example

• Current work in related areas

• Our approach

– Contributions of this paper

– System architecture

• Experimental Results

• Conclusions and Future Work



FEARLESS engineering

Motivating Example

• Current Trend: Large volume of data generated by
Twitter, Amazon.com and Facebook

• Current Trend: This data would be useful if it can
be correlated to form business partnerships and
research collaborations

• Challenges due to Current Trend: Two obstacles
to this process of data sharing
– Arranging a large common storage area

– Providing secure access to the shared data



FEARLESS engineering

Motivating Example

• Addressing these challenges:

– Cloud computing technologies such as Hadoop HDFS

provide a good platform for creating a large, common

storage area

– A data warehouse infrastructure such as Hive provides a

mechanism to structure the data in HDFS files. It also

allows adhoc querying and analysis of this data

– Policy languages such as XACML allow us to specify

access controls over data

– This paper proposes an architecture that combines

Hadoop HDFS, Hive and XACML to provide fine-grained

access controls over shared data



FEARLESS engineering

Current Work

• Work has been done on security issues with cloud
computing technologies

– Hadoop v0.20 proposes solutions to current security

problems with Hadoop

– This work is in its inception stage and proposes simple

access control list (ACL) based security mechanism

• Our system adds another layer of security above
this security

• As the proposed Hadoop security becomes robust it
will only strengthen our system



FEARLESS engineering

Current Work

• Amazon Web Services (AWS) provide a web
services infrastructure platform in the cloud

• To use AWS we would need to store data in an
encrypted format since the AWS infrastructure is in
the public domain

• Our system is “trusted” since the entire infrastructure
is in the private domain



FEARLESS engineering

Current Work

• The Windows Azure platform is an Internet-scale
cloud computing services platform

• This platform is suitable for building new
applications but not to migrate existing applications

• We did not use this platform since we wanted to port
our existing application to an open source
environment

• We also did not want to be tied to the Windows
framework but allow this system to be used on any
platform



FEARLESS engineering

Contributions of this paper

• Create an open source application that combines
existing open source technologies such as Hadoop
and Hive with a policy language such as XACML to
provide fine-grained access control over data

• Ensure that the new system does not create a
performance hit when compared to using Hadoop
and Hive directly



FEARLESS engineering

System Architecture



FEARLESS engineering

System Architecture - Web Application Layer

• This layer is the only interface provided by our
system to the user

• Provides different functions based on a user’s
permissions
– users who can query the existing tables/views

– users who can create tables/views and define policies on 
them in addition to being able to query

– an “admin” user who in addition to the above can also 
assign new users to either of the above categories

• We use the salted hash technique to store
usernames/passwords in a secure location



FEARLESS engineering

System Architecture - ZQL Parser Layer

• ZQL is a Java based SQL parser

• The Parser layer takes as input a user query and
continues to the Policy layer if the query is
successfully parsed or returns an error message

• The variables in the SELECT clause are returned to
the Web application layer to be used in the results

• The tables/views in the FROM clause are passed to
the Policy evaluator

• The parser currently supports SQL DELETE,
INSERT, SELECT and UPDATE statements



FEARLESS engineering

System Architecture - XACML Policy Layer

• XACML Policy Builder

– Tables/Views are treated as resources for building policies

– We use a table/view to query-type mapping

table1 SELECT INSERT

view1 SELECT

to create policies using Sun’s XACML implementation

– Since a view is constructed from one or more tables, this

allows us to define fine-grained access controls over the

data

– A user can upload their own pre-defined policies or have

the system build the policy for them at the time of

table/view creation



FEARLESS engineering

System Architecture - XACML Policy Layer

• XACML Policy Evaluator

– Use the query-type to user mapping

SELECT user1 user2

INSERT user1 user3

to extract the kinds of queries that a user can execute

– Use Sun’s implementation to verify if a given query-type

can be executed on all tables/views that are defined in any

user query

– If permission is granted for all tables/views, the query is

processed further, else an error is returned

– The policy evaluator is used during query execution as

well as during table/view creation



FEARLESS engineering

System Architecture - Basic Query Rewriting Layer 

• Adds another layer of abstraction between a user
and HiveQL

• Allows a user to enter SQL queries that are rewritten
according to HiveQL’s syntax

• Two simple rewriting rules in our system:

– SELECT a.id, b.age FROM a, b;

⇒ SELECT a.id, b.age FROM a JOIN b;

– INSERT INTO a SELECT * FROM b;

⇒ INSERT OVERWRITE TABLE a SELECT * FROM b;



FEARLESS engineering

System Architecture - Hive Layer 

• Hive is a data warehouse infrastructure built on top
of Hadoop

• Hive allows us to put structure on files stored in the
underlying HDFS as tables/views

• Tables in Hive are defined using data in HDFS files
while a view is only a logical concept in Hive

• HiveQL is used to query the data in these
tables/views



FEARLESS engineering

System Architecture - HDFS Layer 

• The HDFS is a distributed file system designed to
run on basic hardware

• In our framework, the HDFS layer stores the data
files corresponding to tables created in Hive

• Security Assumption

– Files in HDFS can neither be accessed using Hadoop’s

web interface nor Hadoop’s command line interface but

only using our system



FEARLESS engineering

Experiments and Results

• Two datasets

– Freebase system - an open repository of structured data 

that has approximately 12 million topics

– TPC-H benchmark - a decision support benchmark that 

consists of a typical business organization schema

• For Freebase we constructed our own queries while
for TPC-H we used Q1, Q3, Q6 and Q13 from the 22
benchmark queries

• Tested table loading times and querying times for
both datasets



FEARLESS engineering

Experiments and Results

• Our system currently allows a user to upload files
that are at most 1GB in size

• All loading times are therefore restricted by the
above condition

• For querying times with larger datasets we manually
added the data in the HDFS

• For all experiments XACML policies were created in
such a way that the querying user was able to
access all the necessary tables and views



FEARLESS engineering

Experiments and Results - Freebase

• Loading time of our
system versus Hive is
similar for small sized
tables

• As the number of tuples
increases our system gets
slower

• This time difference is
attributed to data transfer
through a Hive JDBC
connection to Hadoop



FEARLESS engineering

Experiments and Results - Freebase

• Our running times are
slightly faster than Hive

• This is because of the time
taken by Hive to display
results on the screen

• Both running times are fast
because Hive does not
need a Map-Reduce job
for this query, but simply
returns the entire table



FEARLESS engineering

Experiments and Results - Freebase

Query System Time 

(sec)

Hive Time 

(sec)

SELECT name, id FROM 

Person LIMIT 100;
27.1 28.4

SELECT id FROM Person 

WHERE name=‘Frank Mann’ 

LIMIT 100;

30.2 30.5

CREATE VIEW Person_View 

AS SELECT name, id FROM 

Person;

0.19 0.11



FEARLESS engineering

Experiments and Results - TPC-H

• Similar to the Freebase results, our system gets
slower as the number of tuples increases

• The trend is linear since the tables sizes increase
linearly with the Scale Factor



FEARLESS engineering

Experiments and Results - TPC-H

Query Scale 

Factor (SF)

System Time 

(sec)

Hive Time 

(sec)

Q6

100 605.24 590.66

300 1815.45 1806.4

1000 6240.33 6249.68

Q3

100 1675.19 1670.77

300 7532.23 7511.52

1000 61411.21 61390.71



FEARLESS engineering

Experiments and Results - TPC-H

Query Scale 

Factor (SF)

System Time 

(sec)

Hive Time 

(sec)

Q13

100 870.70 847.52

300 1936.35 1910.19

1000 7322.54 7304.39

Q1

100 1210.04 1209.79

300 5407.14 5411.62

1000 42780.67 42768.83



FEARLESS engineering

Conclusions

• A system was presented that allows secure sharing
of large amounts of information

• The system was designed using Hadoop and Hive
to allow scalability

• XACML was used to provide fine-grained access
control to the underlying tables/views

• We have combined existing open source
technologies in a unique way to provide fine-grained
access control over data

• We have ensured that our system does not create a
performance hit



FEARLESS engineering

Future Work

• Extend the ZQL parser with support for more SQL
keywords

• Extend the basic query rewriting engine into a more
sophisticated engine

• Implement materialized views in Hive and extend
HiveQL with support for these views

• Extend the simple security mechanism with more
query types such as CREATE and DELETE

• Extend this work to include public clouds such as
Amazon Simple Storage Services


