Intrusion Detection

e Principles

e Basics

 Models of Intrusion Detection
e Architecture of an IDS

e Organization

* |ncident Response

FEARLESS engineering

Principles of Intrusion Detection

e Characteristics of systems not under attack

— User, process actions conform to statistically
predictable pattern

— User, process actions do not include sequences of
actions that subvert the security policy

— Process actions correspond to a set of
specifications describing what the processes are
allowed to do

o Systems under attack do not meet at least
one of these

FEARLESS engineering

e Goal: insert a back door into a system

— Intruder will modify system configuration file or
program
— Requires privilege; attacker enters system as an
unprivileged user and must acquire privilege
* Nonprivileged user may not normally acquire privilege
(violates #1)
» Attacker may break in using sequence of commands that
violate security policy (violates #2)

« Attacker may cause program to act in ways that violate
program’s specification

FEARLESS engineering

Basic Intrusion Detection

o Attack tool is automated script designed to
violate a security policy

o Example: rootkit
— Includes password sniffer

— Designed to hide itself using Trojaned versions of
various programs (ps, Is, find, netstat, etc.)

— Adds back doors (login, telnetd, etc.)
— Has tools to clean up log entries (zapper, etc.)

FEARLESS engineering

Detection

e Rootkit configuration files cause Is, du, etc. to
hide information
— Is lists all files in a directory
» Except those hidden by configuration file

— dirdump (local program to list directory entries)
lists them too
* Run both and compare counts
o |f they differ, Is is doctored

e Other approaches possible

FEARLESS engineering

Key Point

 Rootkit does not alter kernel or file structures
to conceal files, processes, and network
connections

— It alters the programs or system calls that interpret
those structures

— Find some entry point for interpretation that rootkit
did not alter

— The inconsistency is an anomaly (violates #1)

FEARLESS engineering

Denning’s Model

o Hypothesis: exploiting vulnerabilities requires
abnormal use of normal commands or
Instructions
— Includes deviation from usual actions
— Includes execution of actions leading to break-ins

— Includes actions inconsistent with specifications of
privileged programs

FEARLESS engineering

Goals of IDS

« Detect wide variety of intrusions
— Previously known and unknown attacks

— Suggests need to learn/adapt to new attacks or
changes in behavior

« Detect intrusions in timely fashion

— May need to be be real-time, especially when
system responds to intrusion

* Problem: analyzing commands may impact response
time of system

— May suffice to report intrusion occurred a few
minutes or hours ago

FEARLESS engineering

Goals of IDS

* Present analysis in simple, easy-to-
understand format
— ldeally a binary indicator

— Usually more complex, allowing analyst to
examine suspected attack

— User interface critical, especially when monitoring
many systems

 Be accurate
— Minimize false positives, false negatives

— Minimize time spent verifying attacks, looking for
them

FEARLESS engineering

Models of Intrusion Detection

 Anomaly detection

— What is usual, is known

— What is unusual, is bad
 Misuse detection

— What is bad, is known

— What is not bad, is good
o Specification-based detection

— What is good, is known
— What is not good, is bad

FEARLESS engineering

Anomaly Detection

* Analyzes a set of characteristics of system,
and compares their values with expected
values; report when computed statistics do
not match expected statistics

— Threshold metrics
— Statistical moments
— Markov model

FEARLESS engineering

Threshold Metrics

e Counts number of events that occur

— Between m and n events (inclusive) expected to
occur

— If number falls outside this range, anomalous

« Example

— Windows: lock user out after k failed sequential
login attempts. Range is (0, k-1).
» k or more failed logins deemed anomalous

FEARLESS engineering

Difficulties

« Appropriate threshold may depend on non-
obvious factors
— Typing skill of users

— If keyboards are US keyboards, and most users
are French, typing errors very common
« Dvorak vs. non-Dvorak within the US

FEARLESS engineering

Statistical Moments

e Analyzer computes standard deviation (first
two moments), other measures of correlation
(higher moments)

— If measured values fall outside expected interval
for particular moments, anomalous

e Potential problem

— Profile may evolve over time; solution is to weigh

data appropriately or alter rules to take changes
Into account

FEARLESS engineering

Example: IDES

 Developed at SRI International to test
Denning’s model

— Represent users, login session, other entities as
ordered sequence of statistics <qg;, ..., 4, >

— 0 (statistic | for day |) is count or time interval
— Weighting favors recent behavior over past
behavior

* A ; sum of counts making up metric of kth statistic on jth
day

* Oyrs1 = Ager— Ay + 27, where tis number of log
entries/total time since start, r factor determined through
experience

FEARLESS engineering

Potential Problems

* Assumes behavior of processes and users
can be modeled statistically

— ldeal: matches a known distribution such as
Gaussian or normal

— Otherwise, must use techniques like clustering to
determine moments, characteristics that show
anomalies, etc.

« Real-time computation a problem too

FEARLESS engineering

Misuse Modeling

 Determines whether a sequence of
Instructions being executed is known to
violate the site security policy

— Descriptions of known or potential exploits
grouped into rule sets

— IDS matches data against rule sets; on success,
potential attack found

o Cannot detect attacks unknown to developers
of rule sets
— No rules to cover them

FEARLESS engineering

Example: NFR

« Built to make adding new rules easily

» Architecture:
— Packet sucker: read packets from network
— Decision engine: uses filters to extract information

— Backend: write data generated by filters to disk

* Query backend allows administrators to extract raw,
postprocessed data from this file

* Query backend is separate from NFR process

FEARLESS engineering

Comparison and Contrast

* Misuse detection: if all policy rules known,
easy to construct rulesets to detect violations

— Usual case is that much of policy is unspecified,
SO rulesets describe attacks, and are not complete
« Anomaly detection: detects unusual events,
but these are not necessarily security
problems

e Specification-based vs. misuse: spec
assumes If specifications followed, policy not
violated; misuse assumes if policy as
embodied in rulesets followed, policy not
violated

FEARLESS engineering

IDS Architecture

« Basically, a sophisticated audit system
— Agent like logger; it gathers data for analysis

— Director like analyzer; it analyzes data obtained
from the agents according to its internal rules

— Notifier obtains results from director, and takes
some action
« May simply notify security officer
» May reconfigure agents, director to alter collection,
analysis methods

* May activate response mechanism

FEARLESS engineering

 Obtains information and sends to director

 May put information into another form
— Preprocessing of records to extract relevant parts

 May delete unneeded information

« Director may request agent send other
Information

FEARLESS engineering

* |IDS uses failed login attempts in its analysis

« Agent scans login log every 5 minutes, sends
director for each new login attempt:
— Time of failed login
— Account name and entered password

* Director requests all records of login (failed or
not) for particular user
— Suspecting a brute-force cracking attempt

FEARLESS engineering

Host-Based Agent

e Obtain information from logs
— May use many logs as sources
— May be security-related or not
— May be virtual logs if agent is part of the kernel
* Very non-portable
o Agent generates its information

— Scans information needed by IDS, turns it into
equivalent of log record

— Typically, check policy; may be very complex

FEARLESS engineering

Network-Based Agents

e Detects network-oriented attacks

— Denial of service attack introduced by flooding a
network

* Monitor traffic for a large number of hosts
« Examine the contents of the traffic itself

« Agent must have same view of traffic as
destination
— TTL tricks, fragmentation may obscure this
 End-to-end encryption defeats content
monitoring
— Not traffic analysis, though

FEARLESS engineering

Network Issues

* Network architecture dictates agent
placement

— Ethernet or broadcast medium: one agent per
subnet

— Point-to-point medium: one agent per connection,
or agent at distribution/routing point
* Focus is usually on intruders entering
network

— If few entry points, place network agents behind
them

— Does not help if inside attacks to be monitored

FEARLESS engineering

Aggregation of Information

o Agents produce information at multiple layers
of abstraction

— Application-monitoring agents provide one view
(usually one line) of an event

— System-monitoring agents provide a different
view (usually many lines) of an event

— Network-monitoring agents provide yet another
view (involving many network packets) of an event

FEARLESS engineering

 Reduces information from agents
— Eliminates unnecessary, redundant records

* Analyzes remaining information to determine
If attack under way
— Analysis engine can use a number of techniques,
discussed before, to do this
e Usually run on separate system

— Does not impact performance of monitored
systems

— Rules, profiles not available to ordinary users

FEARLESS engineering

e Jane logs in to perform system maintenance
during the day

« She logs in at night to write reports
* One night she begins recompiling the kernel
Agent #1 reports logins and logouts

Agent #2 reports commands executed
— Neither agent spots discrepancy
— Director correlates log, spots it at once

FEARLESS engineering

Incident Prevention

 |dentify attack before it completes
* Prevent it from completing

e Jails useful for this

— Attacker placed in a confined environment that
looks like a full, unrestricted environment

— Attacker may download files, but gets bogus ones
— Can imitate a slow system, or an unreliable one

— Useful to figure out what attacker wants

— MLS systems provide natural jails

FEARLESS engineering

Intrusion Handling

* Restoring system to satisfy site security policy
e Six phases

— Preparation for attack (before attack detected)

— ldentification of attack

= Containment of attack (confinement)

» Eradication of attack (stop attack)

— Recovery from attack (restore system to secure
state)

» Follow-up to attack (analysis and other actions)
» Discussed in what follows

FEARLESS engineering

Containment Phase

e Goal: limit access of attacker to system
resources
 Two methods

— Passive monitoring
— Constraining access

FEARLESS engineering

Passive Monitoring

» Records attacker’s actions:; does not interfere
with attack

— |dea is to find out what the attacker is after and/or
methods the attacker is using

* Problem: attacked system is vulnerable
throughout
— Attacker can also attack other systems
 Example: type of operating system can be

derived from settings of TCP and IP packets
of Incoming connections

— Analyst draws conclusions about source of attack

FEARLESS engineering

Constraining Actions

 Reduce protection domain of attacker

 Problem: if defenders do not know what
attacker is after, reduced protection domain
may contain what the attacker is after
— Stoll created document that attacker downloaded

— Download took several hours, during which the
phone call was traced to Germany

FEARLESS engineering

e Deception Tool Kit
— Creates false network interface

— Can present any network configuration to
attackers

— When probed, can return wide range of
vulnerabilities

— Attacker wastes time attacking non-existent
systems while analyst collects and analyzes
attacks to determine goals and abilities of attacker

— Experiments show deception is effective response
to keep attackers from targeting real systems

FEARLESS engineering

Eradication Phase

o Usual approach: deny or remove access to
system, or terminate processes involved In

attack
« Use wrappers to implement access control

— Example: wrap system calls
* On invocation, wrapper takes control of process
 Wrapper can log call, deny access, do intrusion detection
» Experiments focusing on intrusion detection used
multiple wrappers to terminate suspicious processes
— Example: network connections

 Wrapper around servers log, do access control on,
Incoming connections and control access to Web-based

databases

FEARLESS engineering

Firewalls

 Mediate access to organization’s network
— Also mediate access out to the Internet

« Example: Java applets filtered at firewall

— Use proxy server to rewrite them
 Change “<applet>" to something else

— Discard incoming web files with hex sequence CA
FE BA BE

» All Java class files begin with this

— Block all files with name ending in “.class” or “.zip”
 Lots of false positives

FEARLESS engineering

Counterattacking

 Use legal procedures

— Collect chain of evidence so legal authorities can
establish attack was real

— Check with lawyers for this
» Rules of evidence very specific and detailed
 If you don’t follow them, expect case to be dropped

e Technical attack

— Goal is to damage attacker seriously enough to
stop current attack and deter future attacks

FEARLESS engineering

Consequences

1. May harm innocent party

« Attacker may have broken into source of attack or
may be impersonating innocent party

2. May have side effects

 If counterattack is flooding, may block legitimate
use of network

3. Antithetical to shared use of network

 Counterattack absorbs network resources and
makes threats more immediate

4.May be legally actionable

FEARLESS engineering

Example: Counterworm

e Counterworm given signature of real worm
— Counterworm spreads rapidly, deleting all
occurrences of original worm
e Some issues

— How can counterworm be set up to delete only
targeted worm?

— What if infected system is gathering worms for
research?

— How do originators of counterworm know it will not
cause problems for any system?
* And are they legally liable if it does?

FEARLESS engineering

Key Points

 |ntrusion detection is a form of auditing

 Anomaly detection looks for unexpected
events

 Misuse detection looks for what is known to
be bad

o Specification-based detection looks for what
IS known not to be good

 |ntrusion response requires careful thought
and planning

FEARLESS engineering

