
UT DALLASUT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Access Control in Distributed
Systems

Murat Kantarcioglu

FEARLESS engineering

Topics

• Overview
• SAML
• XACML

FEARLESS engineering

Overview

• Security for distributed systems has been
widely investigated; we can distinguish:
– Network security
– Middleware security
– World wide web security

FEARLESS engineering

Middleware security

• Past work:
– Kerberos
– CORBA (Common Object Request Broker Architecture)

• Current work:
– Federated Digital Identity Management
– Access Control and Authorization

• XACML
• SAML

– Core Security Standards
• XML Digital Signature
• XML Encryption

• Advanced Security
– Web services (WS) security

FEARLESS engineering

Middleware
Relevant Standards Bodies

• W3C
– XML, SOAP, WSDL, XML Encryption, XML Digital

Signature, XKMS

• OASIS
– UDDI, SAML, XACML, WS-Security, WS-Policy,

WS-Trust, WS-Authorization, WS-
SecureConversation, WS-Federation, WS-*

• WS-* standards developed by MS/IBM and submitted to
OASIS for standardization

FEARLESS engineering

World wide web security

• The WWW has changed the nature of distributed computing:
– The separation of program and data is once more abolished.

Content providers embed executable content (applets) in documents
to create interactive web pages that can process user input

– Computation is moved to the client. It is thus now the client who
needs protection from rogue content providers

– Mobile code moves from machine to machine, collecting information
from different places or looking from spare computer resources.
Clients need protection from mobile code; mobile code may need
protection from the clients it is running on

– Users are forced to become system administrators and policy
makers

FEARLESS engineering

World wide web security

• Relevant work:
– Security for Java
– Security for mobile agents
– Intellectual property protection

• Watermarking and fingerprinting techniques

FEARLESS engineering

Background Notions - XML

• eXtensible Markup Language
– W3C Recommendation (third edition)
– http://www.w3.org/TR/REC-xml/

• A restricted form of SGML (an ISO standard)
• Allows delivery of custom data
• Focuses on what data is, not what data looks like

(e.g., HTML)
– Use a Document Type Definition (DTD) or XML Schema

(http://www.w3.org/TR/xmlschema-0/) to describe new syntax

FEARLESS engineering

Simple XML Example

<?xml version= “1.1 ”?>
<note>

<date>2004-11-10</date>
<to>Adam</to>

<from>Kody</from>

<heading>Hungry</heading>
<body>Feed me, dad!</body>

</note>

FEARLESS engineering

Background Notions - XML with DTD

<?xml version= “1.1 ”?>
<!DOCTYPE note[

<!ELEMENT note (date, to, from, heading, body)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

]>
<note>

<date>2004-10-11</date>
<to>Adam</to>
<from>Jasmine</from>
<heading>Bone</heading>
<body>Kody stole my bone!</body>

</note>

FEARLESS engineering

Schema Example

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchem a"

targetNamespace="http://www.w3schools.com"
xmlns="http://www.w3schools.com"
elementFormDefault="qualified">

<xs:element name="note">
<xs:complexType>

<xs:sequence>
<xs:element name=“date“ type=“xs:date”/>
<xs:element name="to" type="xs:string"/>
<xs:element name="from" type="xs:string"/>
<xs:element name="heading" type="xs:string"/>
<xs:element name="body" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

FEARLESS engineering

Background Notions - DOM

• Document Object Model
– http://www.w3.org/DOM/

• Internal representation of an XML document as a tree
• Allows one to specify an element and all the data

inside it as a subtree
• Also allows one to specify a search pattern over the

document (e.g. XPath)

FEARLESS engineering

Background Notions - SOAP

• Simple Object Access Protocol
– http://www.w3.org/TR/soap/

• SOAP provides the definition of the XML-based
information which can be used for exchanging
structured and typed information between peers in a
decentralized, distributed environment

• SOAP is a stateless, one-way message paradigm
• Extensible messaging framework

– Issues such as security not part of specification, addressed
as extensions

FEARLESS engineering

Background Notions - The Stack

HTTP (Usually
but not always)

HTTP (Usually
but not always)

XMLXML

SOAPSOAP

FEARLESS engineering

Background Notions - SOAP Messages

• Two main parts to the message
– Header: Contains message meta-information
– Body: Contains the main message

SOAP Envelope

SOAP Header
(optional)

SOAP Body

FEARLESS engineering

Background Notions - SOAP Example

<env:Envelope

xmlns:env=" http://www.w3.org/2003/05/soap-envelope ">

<env:Header>

<n:alertcontrol xmlns:n="http://example.org/alertcon trol">

<n:priority>1</n:priority>

<n:expires>2001-06-22T14:00:00-05:00</n:expires>

</n:alertcontrol>

</env:Header>

<env:Body>

<m:alert xmlns:m="http://example.org/alert">

<m:msg>Pay the electric bill today!</m:msg>

</m:alert>

</env:Body>

</env:Envelope>

FEARLESS engineering

Access Control and Authorization

FEARLESS engineering

SAML

• Security Assertion Markup Language
http://xml.coverpages.org/SAML-TechOverview20v03-11511.pdf

• The goal of SAML is:
– … to define, enhance, and maintain a standard XML-based

framework for creating and exchanging authentication and
authorization information.

• Allows an organization to make assertions about security
properties of a subject
– Authentication
– Attributes
– Authorization decisions

FEARLESS engineering

SAML

• SAML is different from other security systems due to its approach of expressing assertions
about a subject that other applications within a network can trust.

• The following two concepts are important in SAML
– Identity Provider (IdP): The system, or administrative domain, that asserts

information about a subject. For instance, the Identity Provider asserts that this user
has been authenticated and has given associated attributes.
For example: This user is John Doe, he has an email address of
john.doe@acompany.com , and he was authenticated into this system using a
password mechanism. In SAML, Identity Providers are also known as SAML
authorities and Asserting Parties .

- Service Provider (SP): The system, or administrative domain, that relies on
information supplied to it by the Identity Provider. It is up to the Service Provider as to
whether it trusts the assertions provided to it. SAML defines a number of mechanisms
that enable the Service Provider to trust the assertions provided to it. It should be
noted that although a Service Provider can trust the provided assertions provided,
local access policy defines whether the subject may access local resources.
Therefore, although the Service Provider trusts that a given user is John Doe – it
doesn't mean such user is given carte blanche access to all resources. Service
Providers are also known as Relying Parties – due to the fact that they “rely” on
information provided by an Identity Provider (Asserting Party).

FEARLESS engineering

Why is SAML required?

• Four main drivers:
– Limitations of browser cookies: most existing single-sign-on

(SSO) product use browser cookies to maintain the state so that re-
authentication is not needed. However, cookies cannot are not
transferred among different DNS; so a different technology is
required.

– SSO interoperability: different SSO solutions are proprietary and
not interoperable.

– Web services: WS security is still being defined. It is likely that
access control for WS will use authentication and authorization
assertions

– Federation: the need to simplify identity management across
organizational boundaries, allowing users to consolidate many local
identities into a single (or at least a reduced set) federated identity

FEARLESS engineering

Example Scenario of SSO

• A user has a logon session (that is a security context) on a website
(AirlineInc.com) and is accessing resources on that site.

• At some either explicitly or transparently he is directed over to another
web site (in a different DNS domain) – CarRentalInc.com

• The Identity Provider site (AirlineInc.com) asserts to the Service
Provider site (CarRentalInc.com) that the user is known to it and
provides the user's name and session attributes (e.g. “Gold member”).

• As CarRentalInc.com trusts AirlineInc.com it knows that the user is
valid and creates a session for the user based on the user's name
and/or the user attributes.

• This use case illustrates the fact that the user is not required to re-
authenticate when directed over to the CarRentalInc.com site

FEARLESS engineering

SAML assertions

• The assertion is the main element of SAML. It is a package of information
that supplies one or more statements made by a SAML authority.

• Three different kinds of assertion statement that can be created by a
SAML authority:
– Authentication: The specified subject was authenticated by a

particular means at a particular time
– Attribute: The specified subject is associated with the supplied

attributes.
– Authorization Decision: A request to allow the specified subject to

access the specified resource has been granted or denied.

• The outer structure of an assertion is generic, providing information that is
common to all of the statements within it. Within an assertion, a series of
inner elements describe the authentication, authorization decision,
attribute, or user-defined statements containing the specifics.

FEARLESS engineering

Sample SAML Assertion
<saml:Assertion

MajorVersion=“2" MinorVersion="0"
AssertionID="128.9.167.32.12345678"
Issuer="Company.com"
IssueInstant="2002-03-21T10:02:00Z">

<saml:Conditions
NotBefore="2002-03-21T10:02:00Z"
NotAfter="2002-03-21T10:07:00Z" />
<saml:AuthnStatement

AuthenticationMethod="password"
AuthenticationInstant="2002-03-21T10:02:00Z">
<saml:Subject>

<saml:NameIdentifier
SecurityDomain="Comany.com"
Name="joeuser" />

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>

FEARLESS engineering

Major Components of
SAML Assertions

• Element <Assertion> specifies the basic information that is
common to all assertions, including the following elements and
attributes:

– MajorVersion [Required] The major version of SAML used to express
this assertion. The identifier for the version of SAML defined in the
last specification is 2.

– MinorVersion [Required] The minor version of SAML used to express
this assertion. The identifier for the version of SAML defined in the
last specification is 0.

– ID [Required] The identifier for this assertion. It must be of type
xsd:ID , and MUST be unique

– IssueInstant [Required] The time instant of issue of the assertion

– <Issuer> [Required] The SAML authority that is making the claim(s) in
the assertion. The issuer identity SHOULD be unambiguous to the
intended relying parties.

FEARLESS engineering

Major Components of
SAML Assertions

• <ds:Signature> [Optional]: an XML signature that authenticate the assertion
• <Subject> [Optional]: The subject of the statement(s) in the assertion. There

is a SAML fragment dealing with the specification of subjects

• <Conditions> element: conditions that must be taken into account in
assessing the validity of and/or using the assertion

• One or more <Statement> elements:
<AuthnStatement>
<AuthzDecisionStatement>
<AttributeStatement>

– Note: An assertion with no statements MUST contain a <Subject>
element. Such an assertion identifies a principal in a manner which
can be referenced or confirmed using SAML methods, but asserts
no further information associated with that principal.

FEARLESS engineering

Schema Fragment for
SAML Assertions

<element name="Assertion" type="saml:AssertionType"/>
<complexType name="AssertionType">

<sequence>
<element ref="saml:Issuer"/>
<element ref="ds:Signature" minOccurs="0"/>
<element ref="saml:Subject" minOccurs="0"/>
<element ref="saml:Conditions" minOccurs="0"/>
<element ref="saml:Advice" minOccurs="0"/>
<choice minOccurs="0" maxOccurs="unbounded">

<element ref="saml:Statement"/>
<element ref="saml:AuthnStatement"/>
<element ref="saml:AuthzDecisionStatement"/>
<element ref="saml:AttributeStatement"/>

</choice>
</sequence>
<attribute name="MajorVersion" type="integer" use="required"/>
<attribute name="MinorVersion" type="integer" use="required"/>
<attribute name="ID" type="ID" use="required"/>
<attribute name="IssueInstant" type="dateTime" use="required"/>

</complexType>

FEARLESS engineering

SAML authentication assertion

• The <AuthnStatement> element describes a statement by the
SAML authority asserting that the statement’s subject was
authenticated by a particular means at a particular time.

• It include following elements and attributes:
– AuthenticationMethod [Required]: A URI reference that specifies

the type of authentication that took place.
– AuthenticationInstant [Required]: Specifies the time at which the

authentication took place.
– <SubjectLocality> [Optional]: Specifies the DNS domain name

and IP address for the system entity from which the subject was
apparently authenticated.

– <AuthorityBinding> [Any Number]: Indicates that additional
information about the subject of the statement may be available.

FEARLESS engineering

Authentication Method Identifiers

• An authentication statement with an
AuthenticationMethod attribute describes an
authentication act that occurred in the past.

• The AuthenticationMethod attribute indicates how
that authentication was done. Note that the
authentication statement does not provide the means
to perform that authentication, such as a password,
key, or certificate.

FEARLESS engineering

Authentication Method Identifiers

• 7.1.1 Password: The authentication was performed by means of a password.
• 7.1.2 Kerberos: The authentication was performed by means of the Kerberos protocol [RFC 1510] , an

instantiation of the 1856 Needham-Schroeder symmetric key authentication mechanism [Needham78] .
• 7.1.3 Secure Remote Password (SRP): The authentication was performed by means of Secure Remote

Password protocol as specified in [RFC 2945] .
• 7.1.4 Hardware Token: The authentication was performed using some (unspecified) hardware token.
• 7.1.5 SSL/TLS Certificate Based Client Authenticati on: The authentication was performed using either the SSL

or TLS protocol with certificate-based client authentication. TLS is described in [RFC 2246] .
• 7.1.6 X.509 Public Key: The authentication was performed by some (unspecified) mechanism on a key

authenticated by means of an X.509 PKI [X.500][PKIX] . It may have been one of the mechanisms for which a
more specific identifier has been defined below.

• 7.1.7 PGP Public Key: The authentication was performed by some (unspecified) mechanism on a key
authenticated by means of a PGP web of trust [PGP] . It may have been one of the mechanisms for which a more
specific identifier has been defined below.

• 7.1.8 SPKI Public Key: The authentication was performed by some (unspecified) mechanism on a key
authenticated by means of a SPKI PKI [SPKI] . It may have been one of the mechanisms for which a more specific
identifier has been defined below.

• 7.1.9 XKMS Public Key: The authentication was performed by some (unspecified) mechanism on a key
authenticated by means of a XKMS trust service [XKMS] . It may have been one of the mechanisms for which a
more specific identifier has been defined below.

• 7.1.10 XML Digital Signature: The authentication was performed by means of an XML digital signature [RFC
3075].

• 7.1.11 Unspecified: The authentication was performed by an unspecified means.

FEARLESS engineering

SAML attribute assertion

• The <AttributeStatement> element describes a statement by the SAML
authority asserting that the statement’s subject is associated with the
specified attributes.

• It is of type AttributeStatementType , which extends
SubjectStatementAbstractType with the addition of the following
elements
– <Attribute>: The <Attribute> element specifies an attribute of the

subject.
– <EncryptedAttribute>: this element contains encrypted values;

values are encrypted according to the XML Encryption Standard

FEARLESS engineering

SAML authorization decision assertion

• The <AuthzDecisionStatement> element describes a statement by the SAML
authority asserting that a request for access by the statement’s subject to the
specified resource has resulted in the specified authorization decision on the
basis of some optionally specified evidence.

• The resource is identified by means of a URI reference. In order for the assertion
to be interpreted correctly and securely, the SAML authority and SAML relying
party MUST interpret each URI reference in a consistent manner. Failure to
achieve a consistent URI reference interpretation can result in different
authorization decisions depending on the encoding of the resource URI
reference.

• An assertion containing an <AuthzDecisionStatement> must contain the subject
element (in order to bind the authorization to a subject)

FEARLESS engineering

SAML authorization decision assertion

• Main sub-elements of <AuthzDecisionStatement>
are:
– Resource [Required]: A URI reference identifying the resource to

which access authorization is sought.
– Decision [Required]: The decision rendered by the SAML authority

with respect to the specified resource. The value is one of: Permit,
Deny, Indeterminate

– <Action> [One or more]: The set of actions authorized to be
performed on the specified resource. Possible values:

• Read: The subject may read the resource.
• Write: The subject may modify the resource.
• Execute: The subject may execute the resource.
• Delete: The subject may delete the resource.
• Control: The subject may specify the access control policy for the resource.
• Actions can be also negated.

– <Evidence> [Optional]: A set of assertions that the SAML authority
relied on in making the decision.

FEARLESS engineering

SAML protocols

• SAML assertions MAY be generated and exchanged using a
variety of protocols.

• The bindings and profiles specification for SAML
[SAMLBind] describes specific means of transporting
assertions using existing widely deployed protocols.

• SAML-aware requesters MAY in addition use the SAML
request-response protocol defined by the <Request> and
<Response> elements. The requester sends a <Request>
element to a SAML responder, and the responder generates
a <Response> element.

• An interesting set of protocols is represented by “queries”.
Queries allows a party to require assertions concerning a
given entity

FEARLESS engineering

SAML queries

Element <AuthnQuery>
– The <AuthenticationQuery> element is used to make the

query “What assertions containing authentication statements
are available for this subject?” A successful response will be
in the form of assertions containing authentication
statements.

– In response to an authentication query, a SAML authority
returns assertions with authentication statements

FEARLESS engineering

SAML queries

• Element <AttributeQuery>
– The <AttributeQuery> element is used to make the query

“Return the requested attributes for this subject.” A
successful response will be in the form of assertions
containing attribute statements.

FEARLESS engineering

SAML queries

• Element <AuthzDecisionQuery>
– The <AuthorizationDecisionQuery> element is

used to make the query “Should these actions on
this resource be allowed for this subject, given this
evidence?” A successful response will be in the
form of assertions containing authorization
decision statements.

FEARLESS engineering

SAML threat model

• Assumptions:
– the two or more endpoints of a SAML transaction are

uncompromised, but that the attacker has complete control
over the communications channel.

– Additionally, due to the nature of SAML as a multi-party
authentication and authorization statement protocol, cases
must be considered where one or more of the parties in a
legitimate SAML transaction - which operate legitimately
within their role for that transaction - attempt to use
information gained from a previous transaction maliciously in
a subsequent transaction.

FEARLESS engineering

SAML threat model

• (Scoping) Assumptions:
– the local mechanisms that are used to decide whether or not to

generate assertions are out of scope. Thus, threats arising from
the details of the original login at an authentication authority, for
example, are out of scope as well. If an authority issues a false
assertion, then the threats arising from the consumptio n of
that assertion by downstream systems are explicitly ou t of
scope .

– The direct consequence of such a scoping is that the
security of a system based on assertions as inputs i s only
as good as the security of the system used to generat e
those assertions. When determining what issuers to t rust,
particularly in cases where the assertions will be used as
inputs to authentication or authorization decisions, the risk
of security compromises arising from the consumption of
false but validly issued assertions is a large one. Trust
policies between asserting and relying parties should
always be written to include significant consideratio n of
liability and implementations must be provide an aud it trail.

FEARLESS engineering

SAML-Specific Security Considerations

• SAML Assertions
– most concerns arise during communications in the

request/response protocol, or during the attempt to use
SAML by means of one of the bindings.

– However, an assertion, once issued, is out of the control
of the issuer. This fact has a number of ramifications. For
example, the issuer has no control over how long the
assertion will persist in the systems of the consumer; nor
does the issuer have control over the parties with whom
the consumer will share the assertion information. These
concerns are over and above concerns about a malicious
attacker which can see the contents of assertions that
pass over the wire unencrypted (or insufficiently
encrypted).

FEARLESS engineering

Security considerations for SAML request-response protocol

• Denial of Service
– The SAML protocol is susceptible to a denial of service (DOS)

attack.
– Handling a SAML request is potentially a very expensive operation,

including parsing the request message (typically involving
construction of a DOM tree), database/assertion store lookup
(potentially on an unindexed key), construction of a response
message, and potentially one or more digital signature operations.
Thus, the effort required by an attacker generating requests is
much lower than the effort needed to handle those requests.

FEARLESS engineering

SAML implementations

• SQLData Systems, Inc - SQLData SAML Server
(http://www.sqldata.com/saml.htm)

• OpenSAML 1.0 - an Open Source SecurityAssertion
Markup Language implementation
(http://www.opensaml.org/)

• Netegrity (http://www.netegrity.com) recently
announced the availability of a free SAML
implementation for Java called JSAML that, according
to their press release, will be available in October.
(http://www.itworld.com/nl/java_sec/09282001/)

FEARLESS engineering

SAML implementations

• Shibboleth (http://shibboleth.internet2.edu/)
– single sign-on software with an emphasis on user

privacy, built on the SAML 1.1 specification
– Use Cases: Delegated trust in portal scenarios

(e.g. meta-searching)

FEARLESS engineering

XACML - Topics

• Goals

• Approach
• Examples

• Summary

FEARLESS engineering

Goals

• Define a core XML schema for representing
authorization and entitlement policies

• Target - any object - referenced using XML
• Fine access control grained control
• Access control based on subject and object attributes
• Access control based on the object contents; if the

object is not an XML document, the object attributes
can be used

• Consistent with and building upon SAML

FEARLESS engineering

XACML – Key Aspects

• General-purpose authorization policy model and XML-based
specification language

• XACML is independent of SAML specification
• Triple-based policy syntax: <Object, Subject, Action>
• Negative authorization is supported
• Input/output to the XACML policy processor is clearly defined as

XACML context data structure
• Input data is referred by XACML-specific attribute designator as

well as XPath expression
• Extension points: function, identifier, data type, rule-combining

algorithm, policy-combining algorithm, etc.
• A policy consists of multiple rules
• A set of policies is combined by a higher level policy (PolicySet

element)

FEARLESS engineering

XACML Protocol

Policy
Enforcement
Point (PEP)

Policy
Decision

Point (PDP)

Policy
Access

Point (PAP)

Policy
Information
Point (PIP)

XACML
Request/
Response

FEARLESS engineering

XACML Protocol

• When a client makes a resource request upon a server, the PEP
is charged with AC

• In order to enforce AC policies, the PEP will formalize the
attributes describing the requester at the PIP and delegate the
authorization decision to the PDP

• Applicable policies are located in a policy store, managed by the
PAP, and evaluated at the PDP, which then returns the
authorization decision

• Using this information, the PEP can deliver the appropriate
response to the client

FEARLESS engineering

XACML Protocol

1. The Policy Administration Point (PAP) creates security
policies and stores these policies in the appropriate
repository.

2. The Policy Enforcement Point (PEP) performs access
control by making decision requests and enforcing
authorization decisions.

3. The Policy Information Point (PIP) serves as the source of
attribute values, or the data required for policy evaluation.

4. The Policy Decision Point (PDP) evaluates the applicable
policy and renders an authorization decision.

Note: The PEP and PDP might both be contained within the
same application, or might be distributed across different
servers

FEARLESS engineering

XACML Protocol

• XACML Request
– Subject
– Object
– Action

• XACML Response
– Permit
– Permit with Obligations
– Deny
– NotApplicable (the PDP cannot locate a policy whose target

matches the required resource)
– Indeterminate (an error occurred or some required value was

missing)

FEARLESS engineering

Data Flow Model

PEP

context
handler

8. request
context

PIP

4. attribute
query

9. response
context

1. policy

6. attribute

environment

resource

subjects

5b. envrionment
attributes

PAP

obligations
service

11. obligations

PDP

access
requester

2. access request

7. resource

3. request10. response

5c. resource
attributes

5a. subject
attributes

FEARLESS engineering

Data Flow Model

1. PAPs write policies and policy sets and make them available to
the PDP. These policies or policy sets represent the complete
policy for a specified target

2. The access requester sends a request for access to the PEP
3. The PEP sends the request for access to the context handler in

its native request format, optionally including attributes of the
subjects , resource , action and environment

4. The context handler constructs an XACML request context and
send it to the PDP

5. The PDP requests any additional subject , resource , action , and
environment attributes from the context handler

6. The context handler requests the attributes from a PIP
7. The PIP obtains the requested attributes
8. The PIP returns the requested attributes to the context handler
9. Optionally, the context handler includes the resource in the

context

FEARLESS engineering

Data Flow Model

10. The context handler sends the requested attributes and
(optionally) the resource to the PDP. The PDP evaluates
the policy

11. The PDP returns the response context (including the
authorization decision) to the context handler

12. The context handler translates the response context to the
native response format of the PEP. The context handler
returns the response to the PEP

13. The PEP fulfills the obligations
14. (Not shown) If access is permitted, then the PEP permits

access to the resource ; otherwise, it denies access

FEARLESS engineering

XACML Schemas

Policy SchemaRequest Schema Response Schema

PolicySet (Combining Alg)

Policy* (Combining Alg)

Rule* (Effect)

Target

Subject*

Resource*

Action*

Environment

Effect

Condition

Obligation*

Request

Subject

Resource

Action

Response

Decision

Obligation*

FEARLESS engineering

XACML Schemas

Policy SchemaRequest Schema Response Schema

PolicySet (Combining Alg)

Policy* (Combining Alg)

Rule* (Effect)

Subject*

Resource*

Action

Condition*

Obligation*

Request

Subject

Resource

Action

Response

Decision

Obligation*

FEARLESS engineering

Policies and PolicySet

• The key top-level element is the <PolicySet> which aggregates other
<PolicySet> elements or <Policy> elements

• The <Policy> element is composed principally of <Target>, <RuleSet> and
<Obligation> elements and is evaluated at the PDP to yield and access
decision.

• Since multiple policies may be found applicable to an access decision, (and
since a single policy can contain multiple Rules) Combining Algorithms are
used to reconcile multiple outcomes into a single decision

• The <Target> element is used to associate a requested resource with an
applicable Policy. It contains conditions that the requesting Subject,
Resource, or Action must meet for a Policy Set, Policy, or Rule to be
applicable to the resource.

• The Target includes a build-in scheme for efficient indexing/lookup of
Policies.

• Rules provide the conditions which test the relevant attributes within a
Policy. Any number of Rule elements may be used each of which generates
a true or false outcome. Combining these outcomes yields a single decision
for the Policy, which may be "Permit", "Deny", "Indeterminate", or a
"NotApplicable" decision.

FEARLESS engineering

Policies and Policy Sets

• Policy
– Smallest element PDP can evaluate
– Contains: Description, Defaults, Target, Rules, Obligations, Rule

Combining Algorithm

• Policy Set
– Allows Policies and Policy Sets to be combined
– Use not required
– Contains: Description, Defaults, Target, Policies, Policy Sets, Policy

References, Policy Set References, Obligations, Policy Combining
Algorithm

• Combining Algorithms: Deny-overrides, Permit-overrides, First-
applicable, Only-one-applicable

FEARLESS engineering

Overview of the Policy Element

<Rule RuleId=“R2”
Effect=“Deny”>

<Target>
<Resources>
<Subjects>
<Actions>

<Condition>
</Rule>

<Policy>
<Target>

<Resources>
<Subjects>
<Actions>

<RuleSet ruleCombiningAlgId = “DenyOverrides”>
<Rule ruleId=“R1”>
<Rule ruleId=“R2”>

…
<Obligations>

<RuleSet>
</Policy>

<Rule RuleId=“R1”
Effect=“Permit”>

<Target>
<Resources>
<Subjects>
<Actions>

<Condition>
</Rule>

FEARLESS engineering

Combining Algorithms

– Policy & Rule Combining algorithms
Permit Overrides:

If a single rule permits a request, irrespective of the
other rules, the result of the PDP is Permit

Deny Overrides:
If a single rule denies a request, irrespective of the other

rules, the result of the PDP is deny.
First Applicable:

The first applicable rule that satisfies the request is the
result of the PDP

Only-one-applicable:
If there are two rules with different effects for
the same request, the result is indeterminate

FEARLESS engineering

Rules

• Smallest unit of administration, cannot be evaluated alone
• Elements

– Description – documentation
– Target – select applicable rules
– Condition – boolean decision function
– Effect – either “Permit” or “Deny”

• Results
– If condition is true, return Effect value
– If not, return NotApplicable
– If error or missing data return Indeterminate

• Plus status code

FEARLESS engineering

Target

• Designed to efficiently find the policies that apply to a request
• Makes it feasible to have very complex Conditions
• Attributes of Subjects, Resources and Actions
• Matches against value, using match function

– Regular expression
– RFC822 (email) name
– X.500 name
– User defined

• Attributes specified by Id or XPath expression
• Normally use Subject or Resource, not both

FEARLESS engineering

Rule Element

• The main components of the <rule> element are:
– a <target>

• the <target> element consists of
– a set of <resource> elements
– a set of <action> elements
– an environment

• the <target> element may be absent from a <rule>. In this
case the <target> of the rule is the same as that of the
parent <policy> element

– an <effect>
• Two values are allowed: “Permit” and “Deny”

– a <condition>

FEARLESS engineering

Policy Element

• The main components of a <policy> element are:
– a <target> element

• the <target> element consists of
– a set of <resource> elements
– a set of <action> elements
– an environment

• the <target> element may be declared explicitly or may be calculated;
two possible approaches:

– Make the union of all the target elements in the inner rules
– Make the intersection of all the target elements in the inner rules

– a rule-combining algorithm-identifier
– a set of <rule> elements
– obligations

FEARLESS engineering

PolicySet Element

• The main components of a <policyset>
element are:
– a <target>
– a policy-combining algorithm-identifier
– a set of <policy> elements
– obligations

FEARLESS engineering

A Policy Example

• The Policy applies to requests for the server called
“SampleServer”

• The Policy has a Rule with a Target that requires an action of
"login" and a Condition that applies only if the Subject is
trying to log in between 9am and 5pm.

• Note that this example can be extended to include other
Rules for different actions.

• If the first Rule does not apply, then a default Rule is used
that always returns Deny (Rules are evaluated in order).

FEARLESS engineering

A Policy Example

<Policy PolicyId="SamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:permit-overrides">
<!-- This Policy only applies to requests on the SampleServer -->
<Target>

<Subjects> <AnySubject/> </Subjects>
<Resources>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-
equal">

<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">SampleServer

</AttributeValue>
<ResourceAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>
</Resources>
<Actions> <AnyAction/> </Actions>

</Target>

FEARLESS engineering

A Policy Example

<!-- Rule to see if we should allow the Subject to login -->
<Rule RuleId="LoginRule" Effect="Permit">
<!-- Only use this Rule if the action is login -->

<Target>
<Subjects> <AnySubject/> </Subjects>
<Resources> <AnyResource/> </Resources>
<Actions>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-
equal">

<AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">login</AttributeV
alue>

<ActionAttributeDesignator
DataType=http://www.w3.org/2001/XMLSchema#string

AttributeId="ServerAction"/>
</ActionMatch>

</Actions>
</Target>

FEARLESS engineering

A Policy Example
<!-- Only allow logins from 9am to 5pm -->
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-greater-than-or-
equal"

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-only">
<EnvironmentAttributeSelector
DataType="http://www.w3.org/2001/XMLSchema#time"
AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time"/>

</Apply>
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#time">09:00:00</AttributeValu
e> </Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-less-than-or-equal"
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-only">

<EnvironmentAttributeSelector
DataType="http://www.w3.org/2001/XMLSchema#time"

AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time"/>
</Apply>
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#time">17:00:00</AttributeValu
e> </Apply>

</Condition>
</Rule>
</Policy>

FEARLESS engineering

Condition

• Boolean function to decide if Effect applies
• Inputs come from Request Context
• Values can be primitive, complex or bags
• Can be specified by id or XPath expression
• Fourteen primitive types
• Rich array of typed functions defined
• Functions for dealing with bags
• Order of evaluation unspecified
• Allowed to quit when result is known
• Side effects not permitted

FEARLESS engineering

Functions

• Equality predicates
• Arithmetic functions
• String conversion functions
• Numeric type conversion functions
• Logical functions
• Arithmetic comparison functions
• Date and time arithmetic functions
• Non-numeric comparison functions
• Bag functions
• Set functions
• Higher-order bag functions
• Special match functions
• XPath-based functions
• Extension functions and primitive types

FEARLESS engineering

Request and Response Context

• Request Context
– Attributes of:

• Subjects – requester, intermediary, recipient, etc.
• Resource – name, can be hierarchical
• Resource Content – specific to resource type, e.g. XML document
• Action – e.g. Read
• Environment – other, e.g. time of request

• Response Context
– Resource ID
– Decision
– Status (error values)
– Obligations

FEARLESS engineering

XACML History

• First Meeting – 21 May 2001
• Requirements from: Healthcare, DRM, Registry,

Financial, Online Web, XML Docs, Fed Gov,
Workflow, Java, Policy Analysis, WebDAV

• XACML 1.0 - OASIS Standard – 6 February 2003
• XACML 1.1 – Committee Specification – 7 August

2003
• XACML 2.0 – In progress – complete summer 2004

