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The  Graph  Metric  for  Unstable  Plants and 
Robustness Estimates for 

Feedback Stability 

Abslract-In this paper, a “graph metric” is defined that  provides a 
measure  of  the  distance  between  unstable  multivariable  plants.  The  graph 
metric  induces a “graph topology” on  unstable plants, which is the  weakest 
possible  topolom in which  feedback  stability is robust. Using the  graph 
metric,  it is possible to derive  estimates for the  robustness of feedback 
stability without assuming  that  the  perturbed  and  unperturbed  plants  have 
the  same number of RHP poles. If the  perturbed  and  unperturbed  systems 
have the  same RHP poles,  then  it is possible to obtain  necessary  and 
sufficient conditions for  robustness with respect to a given class of per- 
turbations. As an application  of  these  results,  the  design of stabilizing 
controllers  for  unstable singularly perturbed  systems is studied. Finally,  the 
relationship of the  graph  metric to the  “gap  metric” introduced by Zames 
and Ea-Salduuy is studied in detail. In particular, it is shown that  the 
robustness results of Zames and El-S- do not enable  one to conclude 
the causality of the  perturbed  system,  whereas  the  present  results do. 
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I. INTRODUCTION 

T HE objective of this paper  is  to  study the robustness of 
feedback stability. Consider  the  standard  feedback  config- 

uration shown in Fig. 1, where P represents  the  plant  and C the 
compensator.  Suppose this system is  stable.  Much  research  has 
been devoted to deriving conditions under which  the system 
remains  stable as P ,  C are  replaced by some perturbed  systems 
P,, C ,  (see,  e.g., the  special  issue [l]). Almost all of the  research  to 
date has been  concentrated on the case where P,(C,) has  the 
same  number of RHP poles as P(C) .  Yet this is an artificial 
restriction  that arises from  the  methods of analysis used. Sup- 
pose,  for  example,  that P = l/s; then it is intuitively  clear  that 
the system will remain  stable if P is replaced by P, =l/(s + E), 
provided r is sufficiently  small,  and it is immaterial  whether 6 is 
positive or negative. The  point is that  in some sense both l/(s - E) 
and l/(s + r)  are  “close” to l/s, even though one system is ’ 

stable  and  the  other  unstable. 
Accordingly,  the  approach  adopted in this paper is to define  a 

notion of distance on the  set of (possibly) unstable  plants,  and  to 
obtain  robustness  margins  for the feedback system in Fig. 1 in 
terms of the  “distances” between P and PI and between C and 
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I “2 F E mat(YI. define 

I I 

Fig. 1. 

C,. This would include, but would not  be restricted to, the case 
where P, has  the  same  number  of RHP poles as P. 

This paper is organized  as follows. The rest of the  introduction 
is devoted to demonstrating,  by  means of examples,  some of the 
difficulties in defining  a  notion of proximity for unstable  multi- 
variable  plants. In Section I1 we define  a  topology on the set of 
unstable  plants, i.e., a  notion of convergence of sequences. In this 
topology,  a  perturbation of the  plant  consists of perturbations of 
the  “numerator”  and  “denominator” of the  plant  transfer  matrix 
when it is expressed as a ratio of stable transfer  matrices. We 
show  that this is the weakest topology  in which feedback stability 
is robust;  that is, one  can  robustly stabilize against  plant  uncer- 
tainty if and  only if the  uncertainty  can  be expressed as perturba- 
tions in the  stable  numerator  and  denominator of the  plant.  In 
Section I11  we define  a  metric, i.e., a  measure of distance,  for 
unstable  plants,  and show that this metric  induces the  topology 
defined  in  Section 11. Using this metric, we derive  quantitative 
estimates  for  the  robustness of feedback stability in Section  IV. 
These results do not require  the  perturbed  and  unperturbed 
plants to have the  same  number of RHP poles, and as a  conse- 
quence,  they give only sufficient conditions  for  robustness. In 
case  the  perturbed  and  unperturbed  plants  have  the same RHP 
poles, it is possible to  obtain  necessary  and sufficient conditions 
for  robustness,  and this is done  in  Section V. In  Section VI the 
results derived  in  the  preceding  sections  are used to study  the 
design of controllers  for  unstable  singularly  perturbed systems. 
The  extension of the results given here to the  case of distributed 
systems is discussed in Section  VII. 

In some earlier work [14], [ M I ,  a so-called “gap metric” is 
defined,  and  some  robustness results are  proved. In the  Appendix 
we  show that  these  robustness results do not  enable  one to 
conclude  the cazoality of the  perturbed  system, whereas the 
present results do. 

We now  give some  motivating  discussion  concerning the prob- 
lem of defining  a  metric on the set of (possibly unstable)  multi- 
variable plants. While  there  are  readily  available  and  reasonable 
notions of distance on the set of stable plants,  the  issue is  much 
more tricky in  the  case of unstable plants. The best  way to 
illustrate this is by  means of several examples. 

As is customary, let R ( s )  denote  the set of rational  functions 
in s nith real coefficients. We  use Y(to suggest “stable”)  for  the 
subset of R ( s )  consisting of proper  rational  functions whose 
poles  are all in the  open left half-plane. Thus, Y is  the set of 
transfer  functions of BIBO stable systems. For every f in 9’. 
define 

Then 11.11  defines  a  norm on Y, and  the  distance between  two 
functions f and g in Y i s  simply I l f  - gll. Thus, two BIBO stable 
systems  are  “close” if (and  only if) their frequency  responses  are 
close at all frequencies.  More  generally,  a  sequence of functions 
{ f, } in SPconverges to f in Yif and  only if f, ( j w )  converges to 
f (  io) uniformly  for all real w (or  equivalently,f,(s) converges to 
f(s) uniformly  for all s in the closed RHP). With this norm. 9’ 
becomes  a  topological ring, i.e., addition  and  multiplication Yare 
continuous. Thus, iff, -f and g ,  - g, then f, + g ,  -f+ g and 

The extension of the  norm  in (1.1) to stable  multivariable 
plants is straightforward.  Let mat( R ( s ) )  (resp. mat(Y)) denote 
the set of matrices  with  elements  in R ( s )  (resp. 9). For every 

fig, + fg. 

l l ~ l l =  supa(F( jw))  = sup [ ~ + ( j w ) ~ ( j w ) ]  ll’? 
0 w 

(1 4 
where a denotes  the largest singular  value [2] and t denotes  the 
conjugate  transpose. This is a  norm on matt .9) and this defines 
a  metric  on mat(Y) in  the  obvious way.  Moreover. a  sequence of 
matrices { F‘”} in mat(Y) converges to F in mat(Y) [in  the 
sense of the  norm (1.2)] if and  only if each of the  component 
sequences { f,:“} converges to f,, [in the  sense of the norm 
(1.l)l.l Once again. addition  and  multiplication on mat(Y) are 
continuous. 

In the  case of unstable  plants.  one  can ask: what should 
proximity and convergence mean? Consider  again  the  standard 
feedback  configuration  shown in Fig. 1. where P is a  (possibly 
unstable)  plant  and C is the  compensator. In other  words?  both P 
and C belong to  mat( R(s ) ) .  Let 

H (  P, C) = 
( I + P c ) - ’  - P ( I + c P ) - ’  

C ( I - P c ) - ’  (z+cP)-l 

denote  the  transfer  matrix  relating ( u l ,  u , )  to (el .  e:).’ The 
system in Fig. 1 is stable if H (  P, C )  E mat(Y).  in which  case  we 
say  that the pair (P, C) is stable. or that C stabilizes P. Now  a . 
reasonable  notion of convergence  in  mat ( R (s ) )  is the following: 
A  sequence of plants { P:} converges to P if there is a  compensa- 
tor C that stabilizes P as well as P: for all large  enough i ,  and  in 
addition H( P I .  C )  converges to H (  P, C) in  the sense of the  norm 
(1.2). If one thinks of P as  a  nominal  plant  and of P, as 
perturbations of P. then  the  above  definition states that PI - P if 
one  can  find  a stabilizing compensator C for  the  nominal  plant P 
that  also stabilizes the perturbed  plant P, for large enough i .  and 
in  addition the perturbed stable closed-loop  response H (  PI. C) 
approaches  the  nominal stable closed-loop  response H (  P. C). For 
reasons  explained  in  Section 11. we refer to the topology on 
mat(R(s)) induced by the  above  notion of convergence as the 
graph  topology. 

This  notion of convergence for unstable  plants is very  weak. 
There is no requirement  that PI and P should  have  the  same 
McMillan degree. or  that they should have  the same  number of 
RHP poles. The  only  requirement is that  one  can  find  a  com- 
pensator C that stabilizes P as well as PI. in  such  a way that 
H (  PI, C) approaches H (  P, C). The  contrapositive of this is that 
if PI does not approach P. then either PI and P cannot  be 
simultaneously stabilized, or else the  resulting  closed-loop re- 
sponses H (  p,. C )  and H (  P. C )  will be widely different. Thus, the 
foregoing  concept of convergence  gives  rise to the weakest  topul- 
ugr’ in which feedback stability is a  robust  property, Le., the 
weakest  topology in which the  function P - H( P, C) is continu- 
ous for  some C.  Note  that we do not demand  that er:ery C that 
stabilizes P must also stabilize PI for  large  enough I. As a result, 
in  the case  where P.  P, are all stable, the  convergence of { P I }  to 
P in  the  sense of the  norm (1.2) implies  that PI - P in the  graph 
topology as well-just take C = 0. (The  converse is also  true; see 
Lemma 2.2.) 

To illustrate the  above  notion of convergence,  consider  the 
scalar  case  and let 

pryduct  topology  obtained from 9. 

inverses emst. 

‘Mathematically. ths means  that  the topology on mat(Y) is the 

-It is assumed that the system is well-posed so that the indicated 
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Let { E,  } be  any  sequence,  converging to zero,  and let 

Pi( s) = 
s - E, 

( S + l ) ( s + € i ) ‘  (1.5) 

With a bit of “hand-waving,”  the  reader  can  convince himself 
that,  in  order for C to stabilize both P as well as P, for all large 
enough i, C(0) must  equal 0; but  in this case, H (  P,, C)I,=, will 
not  approach H (  P ,  C)I,=,. Thus, the  family of plants  in (1.5) 
does  not  represent  a “valid  perturbation” of P. As  another 
example,  suppose 

1 s - E,  
P ( s )  = ___ 

s ( s + l )  ’ 
P,(s) = 

s(s + l ) ( s  + E,) . (1 4 

Then no compensator can be  found  that stabilizes P as well as all 
P, for large  enough  i. 

In the  above  examples,  the  nonconvergence of { P I }  to P can 
be  explained  by  the “illegal” RHP pole-zero  cancellation  at s = 0 
as i -+ CD. But this “intuition” can lead  one  astray  in  the  case of 
multivariable systems. Consider 

r o  1 1  
P ( s ) =  2s”l  - s ’ + s + l  (1.7) L 7 F  1 s 2  -1 

- ES s-1-E 
s -1  s-1 

2s2-1 - s 2 + s + 1  

__ 

- s’-1 s2 -1 

Then  as E + 0 there is a  pole-zero  cancellation  at s =1 in  the (1,2) 
component of PC. Nevertheless, P, can  be  shown  to converge to P 
as E +. 0. In fact, the following stronger  statement is true. Let C 
be any compensator  that stabilizes P; then C also stabilizes P; for 
small  enough e ,  and  in addition H (  P,, C) -+ H (  P, C) as c +. 0. 

As a final example,  consider 

(1.9) 

(1  .lo) 

Then each component of P, converges to the  corresponding 
component of P as E +. 0. Nevertheless, P, does not converge to P 
as E + 0. 

The preceding  examples illustrate the”difficu1ties  involved in 
determining  what is and what is not  a “valid” perturbation of an 
unstable  multivariable plant. In the  next two sections we define a 
topology  and  a  metric, respectively, that  can  be  used  to  determine 
unambiguously  whether or  not  a  sequence {Pi} converges to a 
limit candidate P. 

11. TIIE GRAPH TOPOLOGY 

In this section we define  a  topology on the set mat( R ( s ) )  of 
(possibly)  unstable  plants, and study  some of its properties. The 
most  important of these is that  the  topology  presented  here is the 
weakest  one on mat ( R  (s)) in which feedback stability is a robust 
property. 

Recall [3] that  every  matrix in mat( R ( s ) )  has  both a right- 
coprime  factorization  (RCE) as well as a  left-coprime factoriza- 
tion  (LCF)  over the ring Y of proper  stable ratipng functions. 
Thus, if P E mat(R(s)), then  there exist N ,  D ,  N ,  D ,  X ,  Y ,  X ,  

? E m a t ( 9 )  such  that 

P ( s )  = N ( s ) [  D ( s ) ] - ’ =  [ I>(s)]-’i?(s) (2.1) 

X ( s ) N ( s ) + Y ( s ) D ( s ) = I  (2.2) 

.~(s)~(s)+b(s)k(s)=I, foralls. (2.3) 

An easy way to find an  RCF  and an LCF is the following  [3]. 
GivenPEmat(R(s)),defineP,Emat(R(A))byP,(h)=P((l- 
A)/X),  and  then  find an  RCF  and  an  LCF of Pl over  the ring of 
polynomials R [ X ]  using standard  methods [4], [ 5 ] .  If 
(&(X) ,  D,(h)) is an  RCF of Pl (h )  over R [ h ] ,  then N ( s ) =  
Nl(l/(s +l)), D(s) = Dl(l/(s  +1)) gives an RCF of P over  the 
ring Y .  Similar  remarks  apply to  LCF’S.~ 

In [3] it is also shown that  an  RCF of an unstable plant 
parametrizes  the  graph of the  plant  in  a  simple way. Suppose 
P E mat ( R  (s)) is of order n X m. Then  the graph of P, denoted 
by 8( P), consists of the  subspace of Lg+m defined by4 

3 ( P ) =  { ( u , y ) E L ; + m : y = P u } .  (2.4) 

Thus,  the  graph of P simply  consists of the  bounded (in the 
L,-sense) input-output  pairs  corresponding to the  possibly un- 
stable  plant P. If in  particular P E mat(Y),  then P maps eoery 
u E LT into L;, and 

9 ( P ) =  { ( u , P u ) : u E L y } .  (2.5) 

If P does  not  belong to  mat(Y), then  not every u in L;” gets 
mapped  into L; by P. In this case [3, Theorem 21 

g ( P ) =  { ( D z , N z ) : z E L T }  (2.6) 

where ( N ,  D) is any RCF over Yof P.* Note  that if P E mat( Y ) ,  
then (P, I )  is  an  RCF of P ,  so that (2.6) reduces to (2.5). 

With this background, we are  ready to define  a  notion of 
convergence in mat ( R (s)). 

Definition 2.1: A sequence of plants {PI } in mat( R (s)) con- 
verges to P in the graph topo/qy if there exist RCF’s ( N . ,  D i )  of 
PI and ( N ,  D )  of P such  that I$ +. N ,  D, +. D  in  mat( 9). 

Thus, P, +. P if one  can  factorize PI and P in  such  a way that 
the right numerator  and  denominator of PI ,  respectively, ap- 
proach  the  right  numerator and  denominator of P. In this way, 
convergence of unstable  plant  sequences  can  be  examined  in 
terms of the  convergence of stable  plant  sequences, which is 
described  in  Section I. It is immediate  from (2.6) that, if PI -+ P 
in the  sense of Definition 2.1, then  the graph of Pi converges to 
the graph of P (in a sense to  be  made  precise  in  Section 110. This 
is  why the  topology on mat ( R (  s)) introduced in Definition 2.1 is 
referred to as the  graph  topology. 

At this stage  one  can ask: i) does  it  matter  which RCF of P is 
used,  and ii) can LCF’s be used instead of  RCF‘s? These  ques- 
tions  are  answered in the  following result from [7, Lemma 4.71. 

Lenlma 2.1: Suppose { P, } is a  sequence in mat ( R ( s ) )  and 
that P E mat(R(s)).  Then  the following are  equivalent. 

b 

stable  operation than finding  polynomial  factorizations. This is because 
3From a numerical  viewpoint,  finding  factorizations  over Y i s  a more 

the set of units in Y i s  open,  whereas the set of units in R[s] is  not. This 
issue will be discussed in more  detail  elsewhere. 

4Here P is used to  denote a rational  matrix  in s as well as the 

output space. 
corresponding  operator  mapping an input  space of functions  into an 

’Hereafter all factorizations  are  over Y u n l e s s  stated  otherwise. 
6Actually,  in  order  to fully characterize the topolo y on mat(R(s)), 

nefs rather  than  sequences [6 ] .  The reader who is familiar with oint  set 
Definition 2.1 would have  to be broadened  to  discuss h e  convergence of 

topology  can  easily  do this. In Section 111 it is shown that t l e  graph 
topology of Definition 2.1 is  actually  induced by a graph metric. As a 
result, mat(R(s)) is a first-countable  topological  space,  and  the  graph 
topology is fully characterized by giving conditions  for  the  convergence of 
sequences. 
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i) PI converges to P in  the  graph  topology. 
ii) there exist  RCF‘s (8,  D!) of PI and ( .Ar, D )  of P such that 

N ,  -, N ,  Dl + D in  mat(Y). 
iii) For ezwy RCF ( N ,  D) of P, there is a  corresponding 

sequence {( N,,  D l ) }  of RCF’s of PI such that X, -, A‘, Dl -, D in 
mat (9). 

iy) Thpre-exist-LCF’s (b,, I?,) of Pi and (b ,  ,i;) of P such 
that Dl -, D ,  N, -, hr in mgt (.?). 

v) For _eclery LCF ( D ,  N )  of P, there is a c?rre_sponding 
sequence { ( D , ,  N , ) }  of LCF‘s of PI such  that Dl -* D, N, + N in 
mat (9). 

Note  that  the  equivalence of i) and ii) is just  a  restatement of 
Definition 2.1. Condition iii) states that it does  not  matter which 
RCF of P is  used. Conditions iv) and v) are the “left” analogs of 
ii) and iii). 

Now we come to the  main results of this section. To make the 
theorem  statements  more  compact, we  use the following notation. 
If P E mat( R ( s ) ) ,  then S( P) denotes  the set of compensators 
that stabilize P. In  other  words, 

S ( P ) =  { C E m a t ( R ( s ) ) : H ( P , C ) E m a t ( Y ) }  (2.7) 

where H (  P, C) is defined  in (1.3). 
Theorem 2.1: Suppose { PI } converges to P in the  graph  topol- 

ogy.  Then  every C in S( P) also  belongs to S( P,) for  large  enough 
i:  moreover,  for  every C E S( P), H (  Pi ,  C) -, H( P. C) in mat(Y).  
Conversely,  suppose { PI } is a  sequence  in mat( R(  s)), that 
P E mat( R ( s ) ) ,  and suppose  there exists a C E S( P) such that 
CES(P,)forlargeenoughiandH(P,,C)-,H(P,C)inmat(Y); 
then { PI }  converges to P in  the  graph topology. 

Corollary 2.1.1: Suppose { P I }  is a sequence in mat(R(s)) and 
that P f mat( R(s ) ) .  Suppose  there exists one C E S(  P) such that 
C~S(P,)forlargeenoughzandH(P~,C)-+H(P.C)inmat(Y). 
Then eoey compensator  in S(  P) has these properties. 

Theorem 2.1  shows that  the  graph topology  is the weakest one 
on  mat( R ( s ) )  in which  the  function P -, H( P. C) is continuous 
for  some C,  i.e., the weakest one in which feedback stability is 
robust  against  plant  perturbations, A related result, given in [7, 
Theorem 4.11, shows that  the  graph topology is the weakest one 
in  which  the  function (P. C) -+ H (  P, C) is continuous, i.e., the 
weakest  one in which feedback stability is robust  against simulra- 
neous plant  and  compensator  perturbations.  The  present  theorem 
statement is much  more direct, and  its  proof  much less technical, 
than in [7]. The result corresponding to the  one  in [7] is  given 
next. 

Theorem 2.2: Suppose { PI }, { C, } are  sequences  in  mat ( R (  s)), 
that P, C E mat( R ( s ) ) ,  and  that (P,  C) is stable. Suppose PI -, P, 
C, -+ C in the  graph  topology;  then ( P I ,  C,)  is stable for large 
enough i and H (  PI, C,) -, H (  P, C) in  mat (9’). Conversely. sup- 
pose ( PI, C,) is stable  and H (  P,. C,) -, H( P, C) in mat(Y);  
then PI -, P, C, -+ C in the graph  topology. 

The proof of Theorem 2.1 is not very difficult. and is based  on 
a few  well-known facts that are  summarized below [7], [8]: A 
function u E Y is called a unit of Y if l/u also belongs to Y .  
Clearly, u is a unit if and only if it has  neither  poles  nor zeros in 
the closed RHP,  and does  not  vanish at infinity (such  functions 
are called miniphase in [9]). Let 9 denote  the set of units of Y .  
Then 9 is an open subset of 9; in  other words. if u is a  unit, 
and if { u , }  is a  sequence  in Y converging to u,  then u ,  is also  a 
unit  for  large  enough i. Moreover,  the  map u -, z4- ’ from +Y into 
itself  is continuous;  thus if u is a  unit  and { u i }  is a  sequence in 
Yconverging  to u,  then { u,-’} converges to u-  ’. Similar results 
hold  in  the  multivariable  case as well. A matrix C: E mat (9) is  
unimodular if its  determinant is a  unit of .Y; in this case i,-‘ 
also  belongs to mat(Y).  The set of unimodular  matrices is open 
and  inversion is continuous;  thus if U is unimodular  and { r/; } is 
a  sequence in mat(Y) converging to L7. then L: is also  unimodu- 
lar  for  large  enough i and { U,- ’} converges to L:- ’. 

Proof of Theorem 2.1: To prove the first part of the theorem. 
suppose { P, } converges to P in the  graph topology. and select 

RCF‘s (Ar , ,  D l )  of PI and ( N ,  D) of P such  that N, -, X ,  Dl + D 
in mat(Y).  Let C be alty stabilizing cqmppsator for P. Then 
from [7]. [lo] there exists an LCF ( Dc, A:.) of C such  that 
D c  D + !V,N = I. Moreover, 

Now  define A ,  = DcDl + RciV,, Then,  as A ,  -, I, it follows that A ,  
is unimodular for large  enough i and  that A;’ - I. Hence, C 
stabilizes Pi for  large  enough i. Moreover. since 

from (1.3), and since addition  and  multiplication  are  continuous 
on mat(Y),  it follows that H (  PI, C) -+ H (  P, C) in  mat(.Y). 

To prove  the  second  part of the  theorem,  suppose { P I }  is a 
sequence  in  mat ( R  (s)), that P E mat ( R  (s)), and suppose  there 
is a C E S ( P )  such that C E S( P I )  for  large  enough i and 
H (  P,, C) -, H( P, C). Let ( N .  D )  )e any RCF of e. Since_ C 
stabilizes P, there is an  LCF ( h,, N,) of C such that D,D + NcN 
= I. Moreover, H (  P. C) is  given by (2.8). By discarding  a finite 
number of terms  from  the  sequence { P,} we can  assume  that C 
stabilizes Pi for all i. This  implies  that  there is an RCF (A;. Di)  of 
P, such  that D,D, + X, = I. Further, 

H ( P , . C ) =  [ I - 
Dl 5: 

from (1.3). As H ( P I I  C )  -, H ( P ,  C) in 
imply  that 

- hr,bc 
Dl D c  1 (2.10) 

mat(Y),  (2.8) and (2.10) 

in m a t ( Y ) .  (2.11) 

Multiplling  both sides of (2.11) by  and  noting  that ,CcN + 
DCo = I gives 

(2.12) 

Hence, { P I }  converges to P in the  graph  topology. 17 
The proof of Theorem 2.2 is deferred to Section IV, as it makes 

use of some further  concepts  that  are  developed therein. 
The  graph topology  gives a  notion of convergence in mat( R (s)). 

As mat(Y) is a  subset of mat( R ( s ) ) ,  the  graph  topology  also 
gives a  notion of convergence on mat (.Y). We  now  show that this 
is the  same as convergence in the sense of the  norm (1.2). This 
shows that  the  graph  topology on mat ( R (  s)) is a  genuine  exten- 
sion to unstable  plants of the  familiar topology for stable plants. 

Lemma 2.2: Suppose { PI } is a sequence  in mat(Y),  P E 
mat(Y),  and IIP, - PI1 -, 0: then P, + P in the  graph  topology. 
Conversely,  suppose { P, } is a  sequence in mat ( R (  s)), P E 
mat(Y),  and PI -, P in  the  graph  topology;  then P, E mat(Y) 
for  large  enough i, and llP, - PI1 -, 0. 

Pro& To prove  the first part of the  lemma,  note  that C = 0 
stabilizes P as well as all PI. since P, P, E mat(Y).  Further,  since 
llPl - PI1 -, 0, it follows from (1.3) that H (  PI, C) + H ( P .  C) in 
mat(Y).  Hence. by Theorem 2.1, PI -, P in the  graph  topology. 

To prove  the  second  part of the lemma,  note  that (P, I) is an 
RCF of P. since P E mat(Y).  By assumption,  there exist RCF’s 
(:V,, D:) of PI such  that ,VI -, P. Dl + I .  Since the set of unimodu- 
lar  matrices is open  and  inversion is continuous, this implies  that 
D: is unimodular  for  large  enough i and that Dl-’ -+ I in mat(Y).  
Hence, P: = X, 0,- ’ is in mat( 9’) for  large  enough i. and  ap- 
proaches P in   mat (Y) ,  i.e.. IIP, - PI1 + 0. 0 
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The second part of Lemma 2.2  shows that,  in the  graph 
topology, mat( Y) is an open  subset of mat(  R(s)). In words, this 
means  that  the set of all stable  (unstable)  plants is an open 
(closed)  subset of the set of all plants. 

We now develop  some  further details concerning  the  conver- 
gence of  sequences  in  the  graph  topology.  These results are  often 
helpful  in  concluding  nonconvergence. 

Lemma 2.3: Suppose { P I }  converges to P in  the  graph  topol- 
ogy. Let s,; . .,s/ denote  the  poles of P in the closed RHP.  Then 
we have  the  following. 

i) Let 9 be  any  compact  subset of the  open RHP such  that 
none of the s, lies on the  boundary of 9, and let u denote  the 
number of poles of P inside 9, counted  according to their 
McMillan degrees. Then  for  large  enough i, each PI has  exactly Y 
poles  inside 9. 

ii) Let 9 be  any closed subset of the closed RHP that  does  not 
contain s,; . .,SI; if P has  a  pole  at infinity, suppose  in  addition 
that R is bounded.  Then P,(s) + P ( s )  as i + x ,  uniformly  for all 
s in 9. 

Remarks: In general,  the  number of closed RHP poles of PI 
and of P need  not  be  equal;  for  example,  consider PI( s) = 1/( s + 
E,), P ( s )  =l/s ,  where { e , }  is  any  sequence of positive  numbers 
converging to zero. 

Proof: Since PI + P in the  graph  topology,  there exist RCF's 
( N l , D , )  of P, and ( N , D )  of P such  that N l + N ,   D i + D  in 
mat(Y).  To prove i), observe  that  det D, + det D in  Y.That is, 
det D , ( s )  + det D ( s )  uniformly  over  the closed RHP. Recall [20, 
Appendix  I] that  the  RHP poles of P are precisely the RHP zeros 
of det D ,  and the McMllan degree of an RHP pole of P is equal 
to  its multiplicity  as  a  zero of det D; similar  remarks  apply to P, 
and  det Di. Since det D and  det D, are  both  analytic  in  the  open 
RHP, and  since  det D has no zeros on  the b o u n d q  of 9, i) 
follows  from  applying  the  principle of argument to  det D and 
det Dl. To  prove ii), observe  that  since Dl( s) 4 D ( s )  uniformll 
over  the closed RHP,  it follows that [ Di(s)]- '  + [D(s)]- 
wherever  the  latter is well-defined, i.e.,  wherever det D ( s )  is 
nonzero.  Moreover, if we exclude a neighborhood of every  closed 
RHP zero of det D ,  the  convergence is uniform mith respect to s. 
Since P , ( S ) = N , ( S ) [ D , ( S ) ] - ~ ,  P ( s ) =  N ( s ) [ D ( s ) ] - ' ,  the  same is 
true of PI and P. 0 

One of the  main difficulties with the  graph  topology is that  the 
convergence of a  sequence of matrices  cannot  be  related  in  a 
simple way to the  convergence of the  component  sequences. In 
other  words,  the  graph  topology on mat( R ( s ) )  is not the  same as 
the  product  topology on mat( R ( s ) )  obtained  from  the  graph 
topology on R(s); in fact, neither  contains  the  other. This was 
illustrated in  Section I by  means of two examples.  The justifica- 
tion  for  the  statements  made  in  those  examples is given next. 

First  consider  the  plant P,(s) of (1.8). This  has  the RCF 

Ne= [A-2 1 
A + €  A-11 

As f + 0, N, approaches No, where 

I ?  

No= [A!2 "l] 

(2.13) 

(2.14) 

Further, D, is independent of c ,  so call it Do. S o ,  in  the  graph 
topology, P, = N, 0,- ' converges to Po = No D; ', where the  latter 
is given by (1.7). However? ( does not converge to (Po) , ,  [see 
( W l .  

Now  consider  the  plant P, of (1.9). This has  the  LCF 

d ,  = 
- ( s - l - € ) ( s - l + € )  - 

(s + q 2  s +1 

(2.15) 

whereas Po of (1.10) has  the LCF 

do - 
- s-1 

s + l '  go= [l 11. (2.16) 

From (1.9), we see that  each  component of P, converges in the 
graph  topology to the  corresponding  component of Po. Neverthe- 
less, P, does  not  converge to Po. Consider  the set 9 = { s: 1s - 1 1  
G 1/2}. Then Po has  one  pole  inside 9, whereas P, has two poles 
inside R whenever E it 0. Hence  from  i) of Lemma 2.3, it follows 
that P, does  not  approach Po. 

Even  though  the  graph  topology is not a product  topology  in 
general, it is a  product  topology  in two important  special cases: 
for  stable  plants  and  for  block-diagonal plants. The case of stable 
plants is covered  by  Lemma 2.2,  which states  that  the  graph 
topology,  when restricted to the  set mat(Y),  is the  same as the 
topology  induced  by  the  norm (1.2), which is of course  a  product 
topology. For block-diagonal  plants, we have  the following result. 

Lemma 2.4: Suppose {PI} is a sequence in  mat(  R(s)), P E 
mat(R(Y)),  and  suppose Pi, P are of the  form 

(2.17) 

where all partitions  are of commensurate size. Then PI + P in 
the  graph  topology if and  only if PI, 4 PI in the  graph  topology 
for  each 1 in  {l; . -, n } .  

The proof of Lemma 2.4 is also given in  Section IV. 
To summarize,  in h s  section we have  defined  a  graph  topol- 

ogy on the set mat( R ( s ) )  of (possibly)  unstable  plants,  and  have 
shown  that  convergence in  the graph  topology  has  a nice inter- 
pretation  in t e r m  of the ability to design stabilizing compensa- 
tors  and  the  continuity of the  closed-loop  response. In fact, the 
graph  topology is the  weakest  topology on unstable  plants  such 
that feedback stability is robust. On the  other  hand,  convergence 
of a  sequence of matrices  cannot  be  related  in  a  simple way to the 
convergence of the  component  sequences,  except in special cases. 
It  is  therefore  desirable to have  a  simple test for  convergence  in 
the  graph  topology. Ths is provided  by  the  graph  metric  intro- 
duced in Section 111. 

Finally, in some  applications one may not wish to use the 
norms (1.1) and (1.2) to measure  distances  in Yand  mat(Y).  A 
careful  examination of the  proof of Theorem 2.1  reveals that  any 
topology on  mat(9') can  be used [and  not  necessarily  the  one 
induced  by  the  norm (1.2)], and  the  theorem  remains valid, 
provided  only  that i) addition  and  multiplication  in 9 are  con- 
tinuous,  and ii) the set of units is open  and  inversion is continu- 
ous. 

In Section 11,  we defined  a  topology on the set of unstable 
plants,  and  derived  several  qualitative  properties  (see  Theorems 
2.1 and 2.2). However, in  order to obtain quantitative estimates of 
stability margins, it is desirable to have  a  quantitative  measure of 
the  disparity  between two unstable plants. Towards this end,  in 
this section we define a metric on the set mat( R ( s ) )  of possibly 
unstable  plants,  and show that  the  topology on mat(R(s)) in- 
duced  by this metric is the  same as the  graph  topology of 
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Definition 2.1. For t h ~ s  reason, we refer to this metric  as  the 
graph  metric. Robustness  estimates  for  feedback stability based 
on the  graph  metric  are given in Section IV. 

A  preliminary  concept is needed to define the graph  metric. 
Suppose M ( s )  is a  square  rational  matrix ~ i t h  the  properties:  i) 
M ( s )  = M'( - s) for all s, where ' denotes  the  transpose: ii) 
M ( j u )  is uniformly  positive  definite  for all o and is bounded as 
a  function of o; and iii) M ( s )  is nonsingular  for  almost all s. 
Under these conditions, it is well known [12] that  there exists a 
matrix A in  mat(Y) such  that M ( s )  = A'( - s ) A ( s )  and  such 
that A is actually  a unit of mat(Y)(i.e., A E mat(9')). Such  a 
matrix A is called  a spectral factor of 1M and is unique to within 
left multiplication  by an orthogonal  matrix; that is, if A and B 
are  both  spectral  factors of M ,  then  there is  an orthogonal  matrix 
Usuch  that B = UA.  

Definition 3.1: A pair ( N ,  D )  is called  a normalized RCF of a 
plant P E mat( R ( s ) )  if ( N ,  D )  is an  RCF of P ,  and in addition 

D ' ( - s ) D ( s ) + N ' ( - s ) N ( s ) = Z ,  foralls.  (3.1) 

Lemma 3.1: Every plant  has  a  normalized  RCF, which  is 

Proof: Suppose P E mat( R(s ) ) ,  and let ( N , ,  D l )  be  any 
unique to within right multiplication  by an orthogonal  matrix. 

RCF of P. Define 

Then  the  coprimeness of N, and Dl assures that M has  a  spectral 
factorization.  Let A be  a  spectral  factor of M and  define ,Ir= 
N , A - ' .  D = D,A '. Then ( N ,  D) is a  normalized RCF of P. 

To show that ( N ,  D) is unique except for  the possibility of 
right  multiplication  by  an  orthogonal matrk. let (.VI, D2) be  any 
other  RCF of P. Then N2 = Y,V, D2 = D,V for some  unimodular 
matrix V E mat(.Y).  and 

(3.3) 

Thus, A V is a  spectral  factor of M 2 ;  moreover, if B is any other 
spectral  factor of M,, then B = UA V for  some  orthogonal  matrix 
U .  Hence, (N,B", D,B- ' )  = ( .V ,A- 'U- ' ,  D I A - ' C : - ' )  = 
( N V ' ,  DU-').  0 

Suppose ( N ,  D )  is a normalized RCF of P and let A = [;I. If 
R E mat(Y),  then it is a  ready  consequence of (1.2) and (3.1) 
that llARll= IlRll. Thus, the  map R + A R  is an isometry  on 
mat(Y). Similarly, if U is an orthogonal  matrix.  then llC'Rll= IlRll 
for all R in mat(9'). 

We now define  the  graph  metric. 
Definition 3.2: Suppose P I ,  P2 E mat( R ( s ) )  have the  same di- 

mensions, and let ( N , ,  D l )  be  a  normalized RCF of PI for i = 1,2. 
Define 

A ; =  [ ;] , i = 1 , 2  

6 ( P , ,  P2) = inf V I -  AzD'II (3.5) 
llL'll c1. L'E mat(9') 

d ( ~ l , ~ z ) = m a x { ~ ( ~ , , P , ) , ~ ( P , , ~ l ) } .  (3.6) 

Then d is called  the graph  metric on mat ( R  (s)). 
It  is left to the  reader to verify that d( P I ,  P.) is a well-defined 

quantity, even though A , ,  A ,  are  only  unique to within right 
multiplication  by an orthogonal  matrix. This is because  multipli- 
cation  by  an  orthogonal  matrix  does  not  change  the  norm. 

Lemma 3.2:  d is a  metric  on mat( R(  s)) taking  values in the 
interval [0,1]. 

Proof: If U = 0, then llAl - A,UII = llAlll = 1. Hence, 
6 (P , ,P , )~1andd(P l1P~)~ l fo ra l lP , ,P2 . Inp rov ing tha td i s  
a  metric,  the  only  nonobvious  part is  the  proof of the  triangle 
inequality.  Accordingly, let P I .  P., P3 E mat( R ( s ) ) ,  and select 
L:, V E mat(Y) such  that llUll 61! l lVl l61 ,  and 

IIA1-AIC7116s(P1,Pz)+r  (3.7) 

l l A 2 - A 3 V 1 1 6 s ( P . , P 3 ) + €  ( 3 4  

where c is some  positive  number.  Then VU E mat(9') and 
IlVUll 6 IlVll.IIUII 61; moreover, 

I I A ,  - A,VC:II G I I A ~  - A:UII+ 1 1 ~ ~ ~ 7 -  A,VUII 

6 llAl - A,CTII+ llAz - A3Vll.llUIl 

6 s ( P 1 , P 2 ) + s ( P z , P , > + 2 €  (3.9) 

where we use the fact that l l U l l  61. Now (3.9) shows  that 

s ( P , , P 3 ) a s ( P , , P , ) + s ( P z , P , > + 2 € .  (3.10) 

Since this is true  for euev c > 0, it follows that 

s ( P , , P , ) a s ( P , , P , ) ; s ( P z . P ~ ) .  (3.11) 

By symmetry, we get the triangle inequality for 8 ( P 3 ,  PI), and 
hence ford. 0 

The main result of this section is Theorem 3.1  which states  that 
the  topology  on mat( R (s)) induced by the  graph  metric is the 
same as the  graph  topology of Definition 2.1. To prove this 
theorem, we need the following technical fact. 

Lemma 3.3: Suppose P,, P, E mat( R ( s ) )  have the same di- 
mensions,  and let A ,  A ,  be  associated  matrices  in  mat (9) 
obtained  from their normalized  RCF's.  Suppose U ,  V E mat(Y)  
satisfy IIL;II 6 1 ,  l lVll61. and llAl - A2UII+ IIA2 - AIVII <1. Then 
L:. V are  unimodular. 

Proof: We have 

I IZ -  VU11 IlAl- A,VUII 6 l l A l -  AzUII+ IIAzU- A,V/UII 

6 l l A l - A , U l l + l l A z - A l V l l < l .  (3.12) 

Hence. VU is unimodular, i.e., det(VU) is a  unit of Y. Since 
det( VU) = det V .  det U ,  it follows that  both  det V and  det U are 
units of Y. i.e., that  both U and V are  unimodular  in mat(Y).  0 

Theorem 3.1: A sequence { PI } in mat ( R  (s)) converges to P 
in  the  graph  topology of Definition 2.1 if and  only if d(P,, P) + 0. 

Proof: 
''If ': Suppose d( PI. P) -+ 0. Then for each c in  the in tend  

(0,1/4) there is an  integer io such  that d(P l ,  P )  whenever 
i 2 io. For  each i, there exist U,, V ,  in  mat(Y) with norm at most 
one  such  that l l A - A , ~ ~ , ( I a d ( P , , P ) + € ,   ~ ~ A f - A ~ ~ ~ ~ 6 d ( P j , P )  
+ c. Now, if i 2 io,  then 

IIA - A,U,ll+ IIA, - AV,:ll6 4~ (1. (3.13) 

Hence, by Lemma 3.3, U,, V ,  E Q. Thus, if 

then (N,U,, DiU,) is an RCF of PI, and 11.4 - A,U,ll 6 2c  whenever 
i 2 io. It follows from  Definition 2.1 that PI + P in the graph 

''On!)] 17: Suppose P, + P in  the  graph  topology,  and let 
( .V, D )  be a normalized RCF of P. Then,  by  Lemma 2.1, there 
exist RCF's ( N , ,  D l )  of P, such  that 

topology. 
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However, (N,, Dl)  need  not  be  normalized.  Let 

MI= [ 

(3.16) 

The infimum  in (3.16) can  be  computed  using  the results in [13], 
and  provides  a  lower  bound  on d(P, ,  P2)  to go with  the  upper 
bound given next. 
Lemma 3.4: Suppose ( N ,  0)  is a  normalized RCF of P: that 

( N , ,  Dl) is a  (not  necessarily  normalized) RCF of Pl, and let 

Suppose IIA - Mill A v < 1. Then 

d (  P, P,) 6 2 ~ / ( 1 -  v). (3.17) 

Proof: Suppose MI = A I R l ,  where A ,  is a  normalized RCF 
of PI. Now 11MJ G llAll+ llMl - All = 1 +  v. Hence llRlll = llMlll 
6 1  + v and llR;'ll61/(1- v), as in the proof of Theorem 3.1. 
From (3.14) and (3.15) we get, successively, 

8 ( P ,  P,) 6 2v (3.18) 

8 ( P , , P ) 6 2 v / ( l - v )  (3.19) 

d(P,P,)=max{8(P,Pl) ,6(Pl ,P)}<2v/(~-v) .  
(3.20) 

This completes  the  proof. 0 
As mentioned earlier, mat( Y) is an  open  subset of mat( R ( s ) )  

in  the  graph  topology (see the  paragraph after the proof of 

Lemma 2.2). Thus, if P E mat (Y), then  there is a  number c > 0 
such  that P, E mat(Y) whenever d( P ,  P,) < c. Estimating this 
number c leads to some  robustness results, as discussed in the 
next section. 

If P is an unstable  plant,  and  particularly if P has jo-axis 
poles,  then it is possible  for evety neighborhood of P to  contain 
plants with a  different  number of RHP poles  from P. For 
example,  the  reader  can verify using  Lemma 3.4 that 

d(  - A) = O(r), 
1 

S + € ' S  
d ( - , i ) = O ( r ) .  s - €  1 s (3.21) 

Thus, every neighborhood of the  unstable  plant l/s contains 
stable plants. 

IV.  ROBUSTNESS E~TIMATFS FOR FEEDBACK STABILITY 

In this section, the graph  metric  introduced in Section I11 is 
used to derive  some  estimates  for  the  robustness of feedback 
stability. We present at once  the  main result of this section, and 
defer  the  proof. 

Theorem 4.1: Suppose  the  plant-compensator  pair (P,C) is 
stable,  and let H ( P ,  C) be  the  associated  stable  closed-loo 
transfer  matrix  defined  in (1.3). Let r =  (1 + IIH(P, C)ll ) . 
Then  the  pair (P,, C,) is also stable whenever 

2 1,P 

m a x { d ( P , P l ) , d ( C , C , ) } ~ d ~ l / ( 2 + 4 r ) .  (4.1) 

Moreover, if (4.1) holds,  then 

where y = 4d/(l-  2 d ) .  
Thus, Theorem 4.1 shows that if P,? C, are sufficiently close to 

(P, C), then ( P I ,  C,) is also stable, and H( P I ,  C,) is close to 
H( P, C). The  measure of proximity of the  perturbed  pair ( P I ,  C,) 
to  the  unperturbed  pair (P, C) is provided by the  larger of the 
graph metria d ( P ,  P,), d(C, C,). The  noteworthy  features of 
Theorem 4.1 are  the  following: 1) Pl( C,) need not  have  the  same 
number of RHP poles as P(C) ;  2) P , (C, )  need  not  have  the 
same  dynamic  order as P ( C ) ;  in  fact, PI can  be  infinite-dimen- 
sional  (representing a distributed  parameter  system),  whereas P 
can  be  finite-dimensional (see Section VI1 for  a  discussion of 
distributed  systems). 

If P, has  the  same RHP poles as P ,  then it is in fact possible to 
derive necessar): and sufficient conditions  for  robustness.  This is 
done  in  Section V. 

We now present  a series of lemmas,  culminating in the  proof of 
Theorem 4.1. 

Lemma 4.1: Suppose P E mat(Y),  and let r = (1 + (IP112)1/2. 
Then P, E m a t ( 9 )  whenever d ( P ,  P,) < l / r ;  moreover, 

llPl - PI1 6 [rd( l+   r ) ] / ( l -   rd)   (4 .3)  

where d denotes d( P, Pl). 
Proof: Since P is stable, ( P ,  I )  is an  RCF  for P1 although it 

may not  be normalized.  Let R be a spectral  factor of I + 
P'( - s) P(s).  Then 

R t ( j o ) R ( j o )  = I +  P t ( j o ) P ( j o )  (4.4) 

which shows that IIRII'<l+ llPl12 = r2. Now (PR- ' ,  R-') is a 
normalized RCF of P. Further,  since d( P, P,) .C l / r ,  there exists 
a  normalized RCF ( z,, Dl) of P, and a matrix U E mat(Y) such 
that JJUJJ 6 1  and 
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In particular, llDIU- R-'Il < l / r  < l / ~ ~ R ~ ~ .  This shows  that BlU 
is a unimodular  matrix,  and  by  an easy calculation, that SAIUR-' is of the form , where ( N , ,  Dl) is an RCF of the 

- -  

where we use the  fact  that  both A and S A R - l  are  isometries. 
Thus, (4.15) and (4.16) show that 

From (4.6), we get 

Also, llN1 - N I I  < y and l l h ' l ]  ~ 1 ,  since II[ ;]\I = 1. Substituting Now, SAR-' gives a normalized RCF of the plant SP,  while 

all these into (4.7) gives SAIUR-' gives a  (not  necessarily  normalized) RCF of  the  plant 
SP,. If  we apply  Lemma 3.4 together nith (4.17) and let c 
approach  zero, we get (4.11). 0 

1, and let 

r 2 y  r y ( l +   r )  ry +-= I l ~ 1 - P I I ~ 1 _ , y  . (4.9) Proof of Theorem 4.1: Consider  the  feedback  system of Fig. 

Since y = d(  P, PI)+ c ,  (4.3) follows by letting e approach 0. 0 
Lemma 4.2: Suppose S is a  unimodular  matrix. If P is a plant 

nith an  RCF ( N ,  D) ,  let SP denote  the  plant nith RCF ( N , ,  Ds), 
G=[ c o  G l = [  c1 " 1  (4.18) 

0 Pl 
where 

where P,, C ,  are  perturbed  versions of P, C .  Clearly, if ( N  , D,), 
( N c ,  0,) are  normalized  RCF's of P and C, respectively, d e n  

(4.10) 

(4.19) 
Let Pl be  another  plant with d( P, Pl) < 1/2. Then 

provided ~ ~ S ~ ~ ~ ~ ~ S ~ l ~ ~ ~ d ( P , P ~ )  < 1 .  

Suppose X ,  Y satisfy 
Proof: First we show that N,, Ds are  indeed  right-coprime. 

[ Y  x][ ;] = I .  

Then 

[ Y  x1.s-1. [ 3 = I .  

(4.12) 

(4.13) 

Now  suppose ( N ,  D), (Nl, Dl) are  normalized RCF's of P, P1, 
and let 

S e l e c t a U ~ i t h ~ ~ U ~ ~ ~ l s u c h t h a t ~ ~ A 1 U - A ~ ~ ~ d ( P , P l ) + r ~ 1 / 2 .  
Then by  Lemma 3.3, U is unimodular.  Let R be  a  spectral  factor 
of A'(- s)S'(- s ) S ( s ) A ( s ) ,  and  define 

(4.14) 

Then (&fs,zx) is a  normalized RCF of the  plant Sf'. NOW 

is a normalized RCF of G. Thus, d ( G ,  G,) < m a {  d( P, Pl) ,  
d(C?  Cl,}. 

Now note  that 

H ( P ,  c )  = ( I +  FG)-' (4.20) 

where 

Thus, if ( N g ,  0,) is an RCF of G, then 

[:I=[: :I[:] 
(4.21) 

(4.22) 

is an RCF of H (in other  words, H =  ( I  + FG)-' = D ( Dg + 
FYg) - ' ) .  Hence,  the  plant H is of the  form SG, where 6 is the 
urnmodular  matrix 

S = [ ;  ;]. (4.23) 
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Now  suppose  the  pair (P, C) is stable, and let r = (1 + 
llH( P, C)llr)l/ ' ,  By Lemma 4.1, if the  quantity on the right side 
of  (4.24) is less than l / r ,  then H(Cl, C,) is also stable. Since 
d ( G ,  G,) d m a {  d ( P ,  P,), d(C ,  C,)} = d ,  the right side of  (4.24) 
is no larger  than 

y A 4d/ ( l -2d) .  (4.25) 

Thus,  from  Lemma 4.1,  a sufficient condition  for (P,, C,) to be 
stable is yr < 1,  or equivalently 

d<1/ (2+4r) .  (4.26) 

This is  the  same as (4.1). If (4.26) holds,  then (4.3) with y 
replacing d leads to (4.2). 0 

We now examine the case whcrc a nominal pair (P, C )  is not 
necessarily stable. 

Lemma 4.3: The  map (P, C) + H (  P, C) is continuous in the 
graph  metric. Specifically,  whenever d(  P, Pl) 1/2, d( C, C,) < 
1/2, we  have 

d ( H ( P , C ) , H ( P l , C l ) ) ~ 4 d / [ l - 2 d ]  (4.27) 

where d = max { d( P, Pl) ,  d(C, Cl)}. 
Proof: See  (4.24). 0 

We  are  now  in a position to give a proof of Theorem 2.2. For 
convenience,  the  theorem is restated here. 

Theorem 2.2: Suppose { Pi},  { C, } are  sequences in mat( R (s)), 
that P, C E mat (R (s)), and  that (P, C) is stable. Suppose PI + P, 
C, + C in  the  graph  topology;  then (PI, C,) is stable  for  large 
enough i and H( PI, C,) + H (  P, C) in mat(Y). Conversely, sup- 
pose ( PI, C,) is stable  and H( PI, C,) + H ( P ,  C); then Pi + P, 
C, + C in  the graph  topology. 

Proof: The  second  sentence is already  proved  in  Theorem 
4.1. To prove  the  last  sentence,  define 

and let F be  as  in (4.21). The  hypothesis is that H(P, ,  C,) + 

H ( P , C ) ,  or that ( I +  FG,)-'+ ( I +  FG)-' in mat (9) .  Now 

from (1.3).  Since ( I +  FG,)-' + ( I  + FG)-l ,  it follows that 

( I + F G , ) - l F = F ( I + G , F ) - ' + ( I + F G ) - l F  

= F( I + GF)- ' .  

Next,  since 

G,(I+FG,)-l=F-l[I-(I+FGi)-l] (4.30) 

it follows that GI( I + FG,)-l+ G (  I + FG)-'. Finally,  since 

( I + G i F ) - l = I - G , ( I + F G , ) - l F  (4.31) 

it follows  that ( I  + G,F)-' -+ ( I  + GF)-'.  In  other  words, 
H(G,,  F )  E m a t ( 9 ) ,  and IIH(G,, F ) -  H ( G ,  F)ll+ 0. If we now 
apply  Theorem 2.1  with P, Pi, C replaced  by G ,  G,, F,  respec- 
tively, we can  conclude  that GI + G in the  graph  topology. 

The trick now is to prove  from this that PI + P, C, -+ C in  the 
graph  topology. As the  example  in (1.7) and (1.8)  shows, this is 
not  automatic.  Let ( N , , ,  Dl,) ,  (A;,, D z l )  be  normalized RCF's of 
C,, PI, and let ( N , ,  D l ) ,  ( N 2 ,  D r )  be  normalized RCF's of C ,  P, 
respectively.  Then  normalized RCF's for G, and G can  be  formed 
as  in (4.19).  Since Gi -, G in the  graph  topology,  there exists a 

sequence { U, } of unimodular  matrices  such that 

where U, is partitioned  in  the  obvious way. Since the  topology on 
mat(Y) is the  product  topology,  each  block  in  the  partitioned 
matrix on the left side of (4.32)  converges to the  corresponding 
block on the right side of (4.32). Thus, 

[ N1ru2j] + [E],  [ N ~ j u 3 1 ]  [ ,o]. (4.33) 
D1iu21 D2rU31 

Since [ %:]. [ 2 1 1  are all isometries, it follows that U,, + 0, 

U,; + 0. Now let A ,  (rem. A )  denote  the  rectanaular  matrix on 
&e left (resp. right)'si'de bf (4.32), and define - 

B,=A-A,U, 

w, = [ ;3, 3 
(4.34a) 

(4.34b) 

Then c, + 1 since IlW,ll+ 0 and I l U , l l + l .  Therefore, 

IIA - A , m  = IIA - A,(U,  - w , ) / C i I l  

G IIA -A,U,/c;ll+ l l ~ ~ K / c i l l  

< ( ( A  - A,U,(I+ A,Ui 1 - - t ~ ~ A , W , / C ; ~ ~  

+ o  
/I i till 

since A i  is an isometry, I l U , l l  is bounded, c, 4 1 ,  and IlJ<,ll-, 0. 
Observe  also  that I l U , l l  =l. Since G, + G in the  graph  metric, 
there exists a sequence V ,  otmatrices such  that 11q:(1<1 and 
IIAK - A , l l +  0. Since IIA - A,U,ll+ IIAV, - A,JI + 0, it is less than 
1 for large  enough i. By Lemma 3.3, it now follows that q: < are 
unimodular for large  enough i. This implies  that U,,, U,, are 
unimodular  for  large  enough i, and  that 

which shows  that Pi + P, C, + C in  the  graph  topology. 
Proof of Lemma 2.4: In the  preceding  proof of Theorem 2.2 it 

was shown  that 

The converse of the  above  implication is easy to establish: 
Suppose C, + C, PI + P. Let (N, ,  D,), ( Np, 0,) be  RCF's of C and 
P, respectively,  and select sequences of RCF's ( N c i ,  D,,) of Ci, 
(N,, ,  DPi) of P, such  that 
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Then 

(4.38) 

which  shows that 

(4.39) 

This completes  the  proof of Lemma 2.4 in  the  case of block- 
diagonal  matrices with two blocks.  The  case of more  than two 
blocks now  follows readily  by  induction. 0 

The robustness  estimates of Theorem 4.1 represent  a good 
beginning, but are  quite  conservative. For instance.  in  Lemma 
4.2, if  we substitute S = I ,  the  identity  operator,  then  the right 
side of (4.11) becomes 

(4.40) 

Compared to the  true  value of d ( S P ,  SP,) (which is d( P ,  P I )  
since S = I ) ,  this bound is not very tight. This looseness is carried 
over into (4.1). Another failure of Theorem 4.1 is in  not  accom- 
modating  some sort of frequency-dependent  weighting in com- 
puting  the various distances.  These  problems  are left for future 
research. 

V. SPECIALIZED ROBUSTNESS RESULTS 

In this section, we study  the  robustness of feedback  systems 
when the perturbed  plant  has the same RHP poles  as  the  unper- 
turbed plant. Both  additive  as well as multiplicative  perturbations 
are  studied. By restricting to this special class of perturbations. 
we are  able to derive necessay and sldjicient conditions for  robust- 
ness. The  current results are weaker than  existing  ones in the case 
of multiplicative  perturbations, since other  authors [23] give 
necessary and sufficient conditions  for  robust stability when the 
perturbed  plant  has  the  same number of RHP poles  as  the 
unperturbed  plant,  although  possibly  at  different locations. How- 
ever, the results in  the  case of additive  perturbations  are new. 

The main  tool used in this section is the following. 
Lemma 5.1: Suppose F E mat(Y). Then I - RF is unimodu- 

lar for all R E mat(Y) with llRll< r if and only if 11Fl1 < l / r .  
Proofi 
“If’: Suppose llFll< l / r .  Then, whenever llRll< r.  we have 

llFRll< 1, which implies  that I + FR is unimodular. 
‘‘Onlv If’: This part is constructive.  Suppose IlFll > l / r :  we 

construct an R with llRll< r such  that I + RF is not  unimodular. 
Let IIAl12 denote the matrix norm defined  by 

Then 

(5.1) 

Hence, if llFll 2 r-’, then either IIF(x)l12 2 r-l or else IIF(jw)l12 
2 r-l  for  some w. Suppose first that IIF(x)ll: 2 r-’. Then. since 
F(m) is a real matrix,  there exist real vectors 11, L’ such  that 
llel12 =1,11~11~ 2 r - I ,  and FLI = u. Let c = IIuII, and let R equal  the 
constant  matrix - uuyc2.  Then l l ~ l l =  c-’< r ;  moreover I - 
R F ( m )  is singular, since RF(x)u = - u. Thus, I +  RF is not 
unimodular.  Next,  suppose IIF(x)llz r-’ ,  but  IIF(jw)lll 2 r - l  

for  some finite w. The  only  additional  complication is that F( j w )  
might  be  a complex matrix. If w = 0, then F ( j 0 )  is real and  the 
above proof applies. If w > 0, select (possibly  complex)  vectors 

where  the L’,, u, are real, and  the e,, 9, lie in [ - r,O). Choose 

R ( s ) = -  

s - al 

0 

0 

0 

0 I 1 
- (5.4) 
Ilull: 

where  the  constants ai. P, are  adjusted SO that 

Then 11 RII < r and ( I  + RF)(  jw) is singular, so that I + RF is  not 
unimodular. 0 

In what  follows, we consider  the  robustness of the  feedback 
system of Fig. 1 when P is perturbed to either ( I  + L )  P where 
L E   m a t ( Y )  and llLll<l or  to P + L, L E mat(9’).  The  former 
is referred to as a  multiplicative  perturbation  and  the  latter  as an 
additive  perturbation.  In  both cases, both Q and P have  the  same 
RHP poles. 

Theorem 5.1: Suppose  the  pair ( P ,  C) is stable. Then C stabi- 
lizes  every Q of the form ( I  + L ) P  for all L E mat(Y) with 
llLll< r <1, if and  only if IIPC(I+ PC)-’IJ < r-’. 

Proof: Let (A;. Dp) be any RCF of P .  Then ( ( I  + L ) N p ,  0,) 
is an  RCF of Q. Since_ ( P ,  C) is stable. it fol!ows from [lo] that 
there exists an LCF (0,. h:) of C such  that D,  Dp + h;AT = I. If 

is  repJaced  by Q,  this :return  difference”  matrix  gecomes 
0,-D + X . (  I + L )  .Vp = I + .V,L.VP. Th-us, C stabilizes every Q of 
the  form ( I  + L )  P If and only if I + A’JhL is Enimodular  for all 
L in- mat(Y) with llLll<r. Now det(I+h:.LNp)=det(Zt 
LN Vc):  hence I + N, L,VP,is unimodular if and o@y If I + LNpNc 
is. &ow from  Lemma 5.1. It follows +at I + L.V 3: is unimodular 
whenevcr llLll< r if and  only if \lNpNcll < r - l .  ft is easily  verified 
that .Vp Arc = PC( I + P C )  - ’. 0 

Theorem 5.2: Suppose ( P ,  C) is stable. Then C stabilizes every 
Q of the  form P t L for all L E  mat(Y) with llLll6 r.  if and 
only if l lC(I+  PC)-’II  < r - l .  

Sketch of Proof: P + L h-a  the R_CF (A; + LDp. Dp). 30 the 
return  differegce  matrix is D,D + $;( N + LD,) = I + NcLDp. 
Now det( I + h7( LD,) = det ( I  + I!DpNC). <o we reqwe 11 Dp  Ncll < 
r -  I .  Finally, DpA:. = C( I + PC)  0 

VI. APPLICATION TO SINGULARLY PERTURBED SYSTEMS 

In this section. we apply  the  theory  developed in Section I1 to 
analyze  the  continuity of singularly  perturbed  systems in the 
graph  topology.  Consider  the system 
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where E > 0 and A,, is a  Hurwitz  matrix (i.e., all eigenvalues of 
A Z 2  have  negative real parts). Let Po denote  the  system  obtained 
from (6.1), (6.2) by  substituting E = 0, namely 

f = A x +  B u ,   y = C x +  Du ( P o )  (6.3) 

where 
A = A11 - A1,A,'A21, B = B1- A , , A ~ ~ ' B ,  

C=C1-C2A,'A,,, D=Dl-C2A,'B,. 
The  question  studied  here is: does P, approach Po in the  graph 
topology as E + O?7 The  motivation for this study is the well- 
known fact (see, e.g.,  [16]) that, if Po is unstable  and  a  controller 
C stabilizes Po, then C may  not  in  general stabilize P, for small 
enough E. In this context,  Theorem 2.1 is significant. Applied to 
the  problem at  hand,  it implies that if Pi + Po in  the  graph 
topology,  then eueq controller C that stabilizes Po also stabilizes 
P, for  small  enough E ,  and  the  resulting  closed-loop  transfer 
matrix H(P,,  C) approaches H(Po,  C). On the  other  hand, if Pi 
does  not  approach Po and C stabilizes Po, then  one  of  two  things 
happens:  either C does  not stabilize P, for small  enough E,  or else 
C does stabilize P, for small enough E ,  but H(  P,, C) does  not 
approach H (  Po, C) .  

One  could  also  explore  the possibility of using an €-dependent 
family of controllers C, such  that C, stabilizes Pi for  small 
enough E,  and H(P,, C,) -+ H( Po, C,) as E -+ 0. This situation is 
addressed  by  Theorem 2.2. In the  present situation, this theorem 
implies  that if such  a  family { C,} exists, then P, + Po, C, + Co 
as E --$ 0. Thus, if P, does not converge to Po, then  one  cannot 
even  find an €-dependent  family C, such  that (Po,  C,) is stable 
and H(  PC, C,) + H( Po, C,). On the  other  hand,  if PC Po, then 
one  can get by with an "&dependent" controller.' 

We state at once  the  main result of this section and devote  the 
rest of the  section to  its proof.' 

Theorem 6.1: Suppose  the  system (6.3) is stabilizable and  de- 
tectable, and  that A,, is Hurwitz.  Then P, approaches Po in  the 
graph  topology as E + 0 if C,(sZ - A,,)-'B, E 0. 

Many  prev~ously known results can  be  obtained as ready 
consequences of Theorem 6.1. For instance, it is shown  in [17] 
that if the  system (6.3) is stabilized  by  state  feedback,  then the 
same  state  feedback stabilizes the system  (6.1),  (6.2) for  small 
enough E. In the  present  setup, this corresponds to  the case  where 
y = x and  the stabilizing controller  for Po is just a  static  gain (call 
it K ) .  Since y = x, we have C, = I ,  C, = 0, hence C2(sZ - 
A,,)-'B, = 0. Thus,  Theorem 6.1 implies  that P, + Po, and The- 
orem 2.1 now implies  that K also stabilizes Pi for  small  enough 
E.  We also get an  added  bit of information  from  Theorem 2.1 that 
is not discussed in [17], namely  that H(P,,  K )  converges to 
H(Po,  K ) .  Similarly, it is shown in [16] that if B, = 0 or C, = 0, 
and if Po is stabilized using  an  observer-controller scheme, the 
same scheme stabilizes Pi for  small  enough E.  This too  can  be 
deduced  from  Theorems 6.1 and 2.1. More  generally,  Theorem 
6.1 shows that if C2(s1 - A,,)-'Bz = 0, then eveq' controller  that 
stabilizes Po also stabilizes P, for  small  enough E. No  details 
need  be known about  the  configuration of the controller. Thus, 
Theorem 6.1 (together  with  Theorem 2.1)  gives means of unifying 
several  known results. 

Now we move  toward  a  proof of Theorem 6.1. Lemma 6.1 
below is of independent interest, as it provides  a  method  for 
obtaining  a  left-coprime  factorization of a  system  described  in 
state-space form."  Since finding  an RCF of a  plant P ( s )  is 
equivalent to finding an LCF for P'(s) ,  the  same  lemma  can  also 
be used for  finding  RCF's. 

(6.4) 

attention  to  the  possibility of  applying this topological  approach  to 
'1 thank  Prof. M. Suzuki of Nagoya  University  for  drawing  my 

singulady  perturbed  systems. 
'1 thank Prof. A. Willsky  of M.I.T. for  raising this issue. 
'1 thank Prof. H. Khalil and P. Kokotovic  for  pointing  out an error in 

an earlier  version of this theorem. 

league D. Aplevich, while the  main  idea of  the  proof  is due  to my student 
"The expression for the  left-coprime  factorization is due to my  col- 

M. McIntye. 

Lemma 6.1: Consider  a  system of the form (6.3), and  suppose 
it is stabiljzable and detectable. Select a matrix F such that 
A - FC A Xis Hurwitz,  and  define 

R ( s )  = C ( s Z -  Z ) - ' ( B  - FD)+ D (6.5a) 

b(3) = z -  C(s1- 3 - ' F .  (6.5b) 

Then (b ,  &) is a  left-coprime  factorization of Po(s)  = 

Proof: First we show that Po(s)  - [ b ( s ) ] - l & ( s )  by estab- 
C(3Z- A)-'B + D. 

lishing  that D ( s ) ~ j ( s )  = N ( s ) u ( s ) .  From (6.3), we get 

~ = A x + B u = X X + F ~ + ( B - F D ) U  (6.6) 

x ( s ) = ( ~ I - ~ - ~ [ F y ( s ) + ( B - F D ) u ( s ) ]  (6.7) 

y(s)=C(sZ-3-'[Fy(s)+(B-FD)u(s)]+Du(s). 
(6.8) 

It only  remains to show that b, #'_are  left-coprime. This is 
equivalent to showing  that  the  matrix [ D ( s )  N(s)] has fulj row 
r_ank whenever Res  B 0 and at s = co. At s = co, we have [ D(co) 
y(co)] = [ Z  Dl, so let us e5amine @e case where s E C,. If 
ID(s)l# 0 for  some s, then [ D ( s )  N ( s ) ]  has full r-ank; so it  is 
only  necessary to exapine those s E C, at which 1 D( s)l = 0 to 
ensure  that [ D ( s )  N(s ) ]  has full rank at these  values of s as 
well. 

In order  to do this, it is first established  that  any C,-zero of 
Ib( .)I must  be an eigenvalue of A. This is done  by showing that 

b ( s ) =  [ Z + C ( s Z - A ) - l F ] - l .  

To prove (6.9) let E denote sZ - A. Then  from (6.5b) 

b = Z - C( E + F C ) - l F .  (6 .lo) 
We  want to show that 

b = [ Z + CE-'F]- ' .  (6.11) 

Thus,  the  claim is that 

[ Z - C ( E + F C ) - l F ] ( Z + C E - ' F ) = Z  

or,  equivalently 

Z+CE-~F-C(E+FC)-~F-C(E+FC)-'FCE-~F=Z 
(6.12) 

CIE-'-(E+FC)-l-(E+FC)-lFCE-l]F=O. 
(6.13) 

The  quantity  inside  the  brackets  equals 

[ Z -(E + FC)-'E - ( E  + FC)-'FC] E-' 

= [ Z - ( E + F C ) - ' ( E + F C ) ] E - l = O .  (6.14) 

Thus, (6.9) holds.  Now let m ( s )  = IZ + C(sZ - A)--'FI. Then (6.9) 
shows  that  every  (not  necessarily C,) zero  of ID( . ) I  must  be  a 
pole of rn(.). But m( .) is analytic  except at the_ eigenvalues of A. 
Thus, every (not necessarily C,) zero of lD(-)I must be an 
eigenvalue of A .  F-uther, if Ib(so)l = 0, then  the  multiplicity of 
so as a zero of ID( .)I is no larger  than  its  multiplicity as an 
eigenvalue of A .  

To conclude  the  proof,  suppose s0rC-  and  that lb (so) l  = 0. By 
the  preceding  discussion, so is an eigenvalue of A ,  say of multi- 
plicity p. Then  the  multiplicity of so as a  zero of ID(-)[ is no 
larger  than p ,  and  by  the stabilizability and  detectability  assump- 
tions, the  McMillan degree of so as a  pole of P(  .) equals p;  that 
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is, there exists a minor p 
of order p at so. By [24, p. 501, there is a  one-to-one gorrapon- 
dence  between  the  minors of P and  the  minors of [ D N ] .  In 
fact, 

w_here- M = {l; . -, m }  is the set of all columns of D. Let F =  
[ D  N ]  and let f(J, K )  denote  the  minor  in (6.15), so that 

p L ) =  
f ( J , K )  151. Now p (  i) has  a  pole  at so of order p ,  

has a pole at so or  order  no  larger  than p .  Hence, 
f ( J ,  K ) (  so) # 0, i.e., F(so)  has full row  rank. Since this argument 
can  be  repeated  at all C+-zeros of ID( .)I, it follows that D ,  N are 
left-coprime. 0 

Proof of Theorem 6.1: Suppose C2(sI - A?,) 'B, = 0 select F 
such &_at 4 - FC is Hurnitz, and  define i?, D by  (6.4) and (6.5). 

6.1. To obtain  an LCF 

w Ke b- 

From [17], the eigenvalues of x, are  asymptotically  equal to those 
of A ,, / E ,  plus  those of 

A,,  - FC, - ( A , ,  - FC,)A,'A~, 

= ( A , ,  - A , ~ A ; ~ A , , ) -  F ( C ,  - C ~ A ; ; A , , )  
= A -  FC. (6.17) 

Hence x, is Hurwitz  for sufficiently small E .  Thus, from Lemma 
6.1, an  LCF of P, is  given by ( B,, i?,), where 

Bc = I -  Co(s I -  j , ) - ' F o  (6.19) 

with 

(6.20) 

The  remainder of the proof  _consists pf studying .6', and B, in 
detail,  and  showing  that N, -+ N ,  D, + D. Recall  that  the  inverse 
of a  partitioned  matrix is  given by 

(6.21) 

where 

A = X -  Y V - ' W .  (6.22) 

Hence, 

= I - c , A - ~ F + c , v - ' w A - ~ F  (6.23) 

where 

~ = ( s I - A , , + F C , ) - ( A , , - F C , )  

= ( ~ I - A , , + F c , ) - ( A , , - F c , ) ( E s I - A , , ) - ~ A , ,  
(6.24) 

V = S I - A ~ : / E ,  W = - A ~ ~ / E .  (6.25) 

Simplification of (6.23) jields 

bc = I - M A - ~ F  (6.26) 

where 

M = C ~ - C , V - ~ W = C , + C , ( E S I - A , , ) - ~ A , , .  (6.27) 

Now 

b = I - C ( s I - a - ' F  

= z - c , ( ~ I - ~ - ' F + c ~ A , ~ A ~ , ( s ~ - * - ~ F .  (6.28) 

Hence, we can  conclude  that D E  + b if  we can show that 

3-1+ ( x I 4 - l  (6.29) 

( € S I  - A ~ . ) - ~ A , , A - ~ +  - A;;A,,(~I - 4 - l .  (6.30) 

Note that ( < S I -  A, , ) - '  does not approach - A;:.11 Hence, 
(6.30) does  not  automatically follow from (6.29). 

To prove (6.29), let denote A , ,  - FC,, and  note  that 

A-'  = [ S I  - &, - ( A , ,  - FC,)( ESI - A 2 2 ) - 1 A 2 1 ]  -' 
= { s ~ - A , , - ( A , ~ - F c ~ ) A ~ ~ A ? ,  

= ( I - R ) - l ( S I - a - l  (6.31) 

- ( A l 2  - FC2)[  ( E S Z  - A , , ) - ' -  A;;] A l l ]  -' 

where 

R = ( A l , - F C 2 ) [ ( ~ ~ l - A 2 2 ) - 1 - A ~ 1 ] ( ~ I - ~ - 1 .  

(6.32) 

Hence, 

A - ' - ( s I - - a - ' =  [ ( I - R ) - ' - Z ] ( S I - ~ - ~ .  (6.33) 

Now ( I  - R ) - ' ( j w )  approaches I unifo-d on every finire inter- 
val [ - w o , w o l a s  c + O ,  and ( j w l -  A)-'+O as I w I + m .  So 
A -  .+ ( S I  - A)- '  and (6.29) is proved. To establish (6.30), ob- 
serve that ( j r w l -  approaches A,' uniformly on every 
finite interval [ - wo, - wO] as E + 0, and  that  both A-' ,  (SI - x)-' are strictly proper. Thus, (6.30)  follows from (6.29) plus  the 
strict  properness  property-of A-' and its limit. Now (6.29) and 
(6.30) together show that D, -+ D as E -+ 0. 

Now let us look at the  "numerator"  matrix kc. From (6.18), 

[ B2F1] + D , .  (6.34) 
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Ignoring  the Dl term which is simply  added on, we can  write .Gc 
as a  sum of four  terms  obtained  by  expanding (6.34). Using 
(6.21), the first term can  be  expressed as CIA-’(B, - FD,). From 
(6.29), it follows that this converges to Cl(sI- A)-l(B1 - FD,). 
The second  term is 

- c2v-’wA-’( B,  - FD,) 

=C2((sI--22)-1A2,b-1(B,-FD,) .  (6.35) 

From reasoning  analogous to  that used to establish-(6.30), it 
follows  that this term converges to - - A ) - ’ ( B ,  - 
FD,). The  third  term is 

F,C’).( SI- + ) - l ?  

=C1A-’(A12 - F l C 2 ) ( ~ s I - A 2 2 ) - 1 B 2 .  
(6.36) 

As before, this converges to 

- C 1 ( s I - 3 ) - ’ ( A , ,  - F,C*)A,’B, 

= - C 1 ( s l - 3 - 1 A , 2 A 2 2 1 B 2  (6.37) 

since C,AG1B2 = 0. The  fourth  and final term is 

- 1  

Now  the  second  term on the right side of (6.38) is strictly proper 
and therefore  conver es without  any  difficulty to C2AG1A ~ l ( s l -  
A)-’(A12 - FC,)A;’ $ B2.  Further,  the first term is identically  zero 
by assum tion  Moreover,  the limit of the  second  term  simplifies 
to c2Ag52L(sI- 4-51,,,431~,. Putting  everything  together, 
we  see that N, approaches 

( C , - C 2 A , ’ A ~ 1 ) ( s I - ~ - 1 ( B , - F D 1 - ~ 1 , ~ 2 2 1 ~ 2 ) + ~ 1  

= ~ ( S I - ~ - ’ ( B - F D , ) + D , = ~ ~  sinceD,=D. 

(6.39) 

Hence P, --* Po in the  graph  topology. 
In conclusion,  observe  that if all matrices  in (6.1), (6.2) are 

known,  then  Theorem 4.1 can  be used to make  the  qualitative 
phrase  “for  small  enough c ”  more  precise in a  quantitative sense. 

VII. CONCLUSIONS 

In this paper, we have  defined  a  “graph  metric”  that  provides  a 
measure of the  distance  between  unstable plants. The  graph 
metric  induces  a  “graph  topology” on unstable  plants, which  is 

the  weakest  possible  topology in which feedback stability is 
robust.  Using  the  graph  metric,  it is possible to derive  estimates 
for  the  robustness of feedback stability without assuming that  the 
perturbed  and  unperturbed  plants  have  the  same  number of RHF’ 
poles. If the  perturbed  and  unperturbed  plants  have  the  same 
RHP poles, then  one  can  derive  necessary  and sufficient condi- 
tions  for  robustness  with  respect to a given class of perturbations. 

The generalization of the results of this paper  to linear distrib- 
uted  systems is straightforward. One simply  replaces Y by  the set 
of transfer  functions of all BIBQ stable  systems (lumped as well 
as distributed).  This is the  set & defined in [18]. It  is now known 
[7] thatA  not all transfer  functions of the !arm a / b ,  where 
a, b E &’, have  coprime  factorizations  over d. Hence,  the  graph 
metric ,can only be  defined  for  those  plants  that  have an RCF 
over &. Fortunately, this- class includes all lumped  systems,  as 
well as all the class mat( B ) ;  see [ l l ]  and  the  references therein. 
The existence of the  spectral  factors  needed to define  the  graph 
metric  follows  from [19]. In order  to do full justice to the 
technicalities in  the  case of distributed  systems,  a  detailed  treat- 
ment will be given  elsewhere. 

In defining  the  graph  metric between two plants, we have  used 
their right-coprime factorizations. We could  have  also used their 
LCF’s to define an equivalent,  although  not  equal,  metric. 

There  are  some  open  problems for  future  research.  The first is 
to  find  a  formula  for explicitly computing  the  graph  metric (we 
give only an  upper  and  a  lower  bound).  The  second is to improve 
the  bounds given in  Theorem 4.1 by  making  them less conserva- 
tive. 

APPENDIX 
COMPARISON TO THE GAP METRIC 

In this Appendix, we analyze  the  gap  metric  defined  in [14], 
[15] and  analyze  its  relationship to the  graph  metric  defined in 
the  present  paper. A few preliminaries  are  required  for this 
purpose. 

Recall [21] that the Hardy space H Z  consists of analytic  func- 
tions f of the  complex  variable s with  the  property  that 

sup Irn I f(o+ja)l ’dw<m. (AI) 

The space H Z  is a  Hilbert  space,  with  inner  product  defined  by 

o > o  -m 

Moreover, it is well known [21,  p. 4711 that  a  “time”  functjon 
f( t )  belongs to L2 [0, m) if and  only if its  Laplace  transform f( s) 
belongs to H’. Further, Laplace  transformation is a linear  isome- 
try from L, into H’. 

Let 9?(L2) denote  the set of linear  continuous  operators map- 
ping L2 into itself. Then 9 ( L 2 )  is a Banach  algebra if each 
operator is equipped with the  standard  supremum  norm.  It is 
important  to  note  that not all operators  in 9 ( L 2 )  are  causal in 
the sense of [18, p. 391. Since L2 and HZ are  isomorphic, we let 
9 ( H 2 )  denote  the set of continuous  linear  operators on H z  
corresponding to those  in a( L2).  

The  notion of stability employed in [14], [15] is that an 
input-output  map is stable if it belongs to  mat(g(L,)). Thus, a 
system is deemed to  be  stable if it  maps  L,-inputs into L,-out- 
puts  in a  continuous  (although  not  necessarily  causal)  manner. 
Thus,  the  above  notion of stability is equivalent to requiring  the 
system  transfer  matrix to lie in mat(9(H2)).  This  is  a  weaker 
notion of stability than  the  one  employed  in this paper, which (at 
this level of generality)  corresponds to requiring  the  system 
transfer  matrix to lie in mat(&) (see Section  VII). Thus, we 
require  a  stable  input-output  map to be  causal as well as 
bounded,  whereas in [14],  [15] a  stable  input-output  map is only 
required to  be  bounded. 
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In [14],  [15] a  gap  metric is defined on the set of closed 
operators (i.e., operators whose graphs  are closed subspaces) 
mapping  some  subset of L.7 into itself, for  some  integer m .  If 6 
denotes  the  gap  metric,  then  the  principal result of  [14],  [15] can 
be  stated as follows. Suppose P E mat(9(  L,)) is square, and 
that 6 ( P ,  P1) < (1 + IIPI12)-1/2. Then P, E mat(9(L1)). and 

Even if P is causal,  the  above result does  not  guarantee  that PI is 
causal, only that  it  is bounded. In fact causality is not  addressed 
in [14],  [15]. Using (A.3), it is shown that if ( I +  P)-' E 
mat (9( L z ) )  and 6( P, PI) is sufficiently small,  then ( I  + PI) E 
mat(3?(Lz)),  and ll(I+ P l ) - ' - ( Z +  P)-'ll is 0 ( 6 ( P , P , ) ) ;  the 
actual  formulas  can  be  found in [14],  [15]. This result means  that 
if P is stabilized by  unit  feedback  and 6( P. P,) is sufficiently 
small,  then P, is also stabilized by unit  feedback  and ( I  + 

is close to (I + P>-'. 
Thus,  in s u m m a r y ,  a  comparison of the  contents of this paper 

with  those of [14],  [15] results in  the following observations. 
1) In the present  paper,  causality  as well as boundedness of 

the  input-output  map  are  requirements  for stability; in [14],  [15] 
only  boundedness is required.  It is not known at  present  whether 
the results of [14], [15] can  be  modified to conclude  the  causality 
as well as  boundedness of the  perturbed  system, if the  original 
system is causal  as well as  bounded. 

2)  The  present  analysis is carried  out  for  nonsquare  plants  and 
general  (not  necessarily  unit or even stable) feedback.  The  analy- 
sis in [14], [15] is for  square  plants  under  unit  feedback. 

3) The scope of the results in [14].  [15] can  be  extended  by 
treating the plan-compensator combo as a  square system. That 
is, given the  system of Fig. 1, define 

.=[; -;] 
and observe  that H ( P ,  C) = ( I  + G)-' .  But in this case. 6(G,  GI)  
is not  related  in [14],  [15] to individual  variations  in P or C. This 
is done  in  the  present  paper. 

In [17], a topology is defined  for  unstable  plants in a very 
general setting. One  begins with a set #of "stable"  plants,  which 
is assumed to have  two properties: i) X i s  a  topological  ring  with 
no  zero divisors, and ii) the set of units  in X i s  open,  and  the 
map u + u- l  mapping $into itself is continuous.  The  universe of 
unstable  plants is then  taken to be the set mat( 9). where P i s  the 
field of fractions  associated nith 2, Let V denote  the  subset of 
m a t ( F )  consisting of those  matrices  that have both an RCF  as 
well as an LCF over X ;  then  a  natural  topology  can  be  defined 
over %in a  manner entirely analogous nith Definition 2.1. by just 
replacing  the set Y b y  X .  We may refer to this as the graph 
r o p o l o ~  induced by X .  In the remainder of tlus Appendix, we 
show  that  the  topology  induced by the  gap  metric is the  same as 
the  graph  topology  induced  by  the set 9 ( L z ) .  

This comment  in no way implies  that  the  graph  metric  of 
Section 111 is equivalent to the gap  metric.  The  topology of 
Section I1 (which is the  one  induced  by  the  graph  metric) IS the 
graph  topology  induced  by  the set 9, whereas  the  topology 
induced by the  gap  metric is the  graph  topology  induced  by  the 
set 9 ( L 2 ) .  They  are  both  graph  topologies,  corresponding to 
different choices for  the set of "stable" systems.  Since Y(or 2) 
is a proper subset of 9( H z ) ,  the  topology on rational  functions 
induced by the  gap  metric is certainly  no  stronger  than  the  one 
induced by the  graph  metric.  Whether it is actually weaker  is not 
yet known. 

Before presenting  the  main result of the  Appendix, we state 
and prove a few lemmas. In what follows, P is  always of dimen- 
sion m X m ,  and  %denotes  the set of plants that possess both  an 
RCF and  an  LCF over 9( Lz) .  

Lemma A.1: Suppose P E Q. Then P is closed. 

Proof: We will actually show that if P has  an  RCF,  then  the 
graph of P is closed. It will be  seen that this result also  holds  for 
nonsquare  plants.  Let ( N ,  D) be an  RCF of P over 9( L,). Then, 
by an easy modification of [3, Theorem 21, it follows that  the 
graph of P is described  by 

G(P)= ((DZ,NZ):ZEL~}. (A.5) 

Select X ,  Y in m a t ( 9 (  I.,)) such  that X N  + YD = I ,  and let {vi} 
be  any  sequence in 9( P) converging to c' E L:"; we will show 
that c' E 9( P). Suppose v, = (Dz,, Nzi )  where z, E Ly. Then zi = 
[ Y X ] u i .  Since c', + z!, it follows that { zi} is convergent,  with 
[ Y  X]vasitslimit.Definez=[Y X ] ~ E L ~ . T ~ ~ ~ ( D , - . N Z ) E  
9( P). Moreover, ( D z ,  Nz) = lim( Dt,, Nz ) = lim u ,  = u. 0 

Since 9( P) is a closed subspace of L;', there is a  well-defined 
orthogonal  projection  mapping L:" onto 9 ( P ) .  Let n(P) de- 
note this projection.  Then,  for  any x E Li", I I ( P ) x  is the  unique 
element L' in 9( P) that minimizes 11-x - cII. Since every 1' E 9( P) 
is of the  form (Dz, Nz) for  some -7 E L?, it is an easy exercise to 
show  that 

rI( P )  = [E]( D*D + N * N ) - l [  D* A'*] (A.6) 

where * denotes  the  adjoint  operator.  Note  that n(P) is self- 
adjoint, which means  that it is noncausal except in the  most 
tri\ial cases. 

Lemma A.2: Suppose ( I  + P)- '  E mat( 8( &)). Then P E Q. 
Proof: L e t ( I + P ) - ' = R . T h e n P = R - ' - I = ( I - R ) R - '  

= R - ' ( I - R ) . S i n c e R + ( I - R ) = Z , R a n d I - R a r e b o t h l e f t -  
and right-coprime. 

Lemma A.2  shows that Vis large  enough to include all plants 
stabilized  by  unit  feedback. 

Now we present  the  main result of this section. Note  that  the 
plants  in  Theorem A.l need  not  be  square. 

Theorem A.1: A  sequence { Pi } in  %converges to P E %in the 
graph  topology  induced  by 3?( L,) if and  only if 6( P, P I )  + 0. 

Proo) 
"Only If ': Recall [15, p. 881 that 

Suppose Pi --* P in  the  graph  topology  induced  by 3?(Lz). Then 
there exist RCF's ( W , ,  D l )  of PI and ( N ,  D) of P such  that 
D, --f D, Ay --* N in .@(L2). Since formation of adjoints  and 
inversion  are  both  continuous  on 9( L2),  it follows that 

n (P,) = [ 3 (D:D, + A<*N,) - I [  0: x* ]  + rI( P )  

"Zf': Suppose 6( P, P I )  4 0, and let ( .hr, D) be  an RCF of P 
over 9( L1). We  will construct  RCF's ( N , .  0,) of PI such  that 
N, + N ,  Di .+ D. In fact, define 

Since II( P I )  rI( P), 

(A.lO) 

and all that  remains to be shown is that (Ar t ,  D l )  is actually  an 
RCF of Pi. We  state this as a  separate  lemma, since it might  be of 
independent interest. 
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Lemma A.3: Suppose ( N ,  D) is an  RCF of P, that 6( P, P,) < 1, 
and define ( A’,, Dl) by 

(A.lO) 

Then ( N , ,  Dl) is an  RCF of P,. 
Proof: The proof is divided into  four steps. 

Step I: The set {( Dlz, N!z): z E Ly} is a closed subspace of 
L:”. We  show that  there exlsts a  constant a such that 

The above  claim will then follow readily  from [22, p. 513, 
Problem 15(ii)]. 

Let 6 denote 6( P, P,) and recall that 6 < 1. Now, if 11 E $( P), 
then 

l l u - ~ ( ~ l ) u l l = I l ~ ( P ) u - ~ ( ~ l ) ~ l l ~ ~ [ 1 ~ l l .  (A.12) 

Hence 

~ ~ I I ( P l ) u ~ ~ ~ ( l - 6 ) ~ ~ u ~ ~   f o r a l l u E S ( P ) .  (A.13) 

So for  any z E L,”, we have 

Select X, Y E mat( S( Lz))  such that X N  + YD = I .  Then 

which  implies that 

(A.14) 

(A.15) 

The inequality (A.ll) readily follows from (A.14) and (A.15). 
Step 2: The set {( D l t ,  Nlz):  z E L,” } equals 9 Pl). In view of 

Step 1,  it is enough to show that  the  range of : L,” -+ 8( P1) 
is dense in 9( P,). Since 9( P,) is a closed subspace of  L:”, it is a 
Hilbert  space  in  its own right. Hence, to establish  the claim, it is 

enough to show that if u E 9 ( P l )  and ( u , [ 2 ] 2 )  =Oforall  

z E L;”, then u = 0. Suppose u E 9(P,) has this property.  Then 

[:I 

(A.16) 

which  implies  that [ D; N,*]u = 0, i.e., that [D* N*]rI(P,)*u 
= 0 because of (A.10). Now l I ( P , )  is self-adjoint, and u E 9( Pl); 
so I I (P,)*u=u.  Hence, [D* N * ] u = O ,  which implies  that 
s ( P ) u  = 0, from (A.6). Now,  interchanging P and P, in (A.13) 
gives 

IlII(P)ulla(1-6)11ull  foralluE9(Pl). (A.17) 

Since 6 1, 11( P) ZJ = 0 implies u = 0. 
Step 3: The map  z + ( D1z, Nlz) is a one-to-one  map of L;” 

onto 9(P,). The  “onto”  part is established in Step 2, and the 
one-to-one  art follows  from (A.11). 

U = X,Nl + YIDl .  The  action of U can  be  simply  explained as 
follows.  Every u E 9(P,) can  be-uniquely  represented as 
( D , z ,  Nlz) for  some z E Ly, and as (Dl?, Nlf). for  some 2 E L,”, 
U merely  maps  z into ,?. As such, U is a  contmuous one-bone 
map of LT onto itself, and,  by  the  open  mapping  theorem [22, p. 
571, Up’ is also continuous. 0 

In closing, we observe  that all of the  above  reasoning  breaks 
down  completely if  we insist on using causal bounded  operators 
instead of .%?( L2). 
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On the  Structure of State-Space Models 
for Discrete-Time Stochastic 

Vector Processes 
ANDERS  LINDQUIST AND MICHELE PAVON 

Abstract-From  a  conceptual  point of view,  structural  properties  of 
linear  stochastic  systems  are  best  understood  in  a  geometric  formulation 
which  factors  out  the  effects of the  choice of coordinates. In this paper we 
study  the  structure of discrete-time  linear systems with  stationary  inputs  in 

, the  geometric  framework  of  splitting  subspaces  set  up  in  the  work by 
Lindquist  and Picci. In  addition  to  modifying  some of the  realization 
results  of this Kork  to  the  discrete-time setting, we consider some problems 
which  are  unique to the  discrete-time setting. These  include the relations 
between  models  with  and without noise  in  the  observation  channel,  and 
certain  degeneracies  which  do not occur  in  the  continuous-time  case.  One 
Qpe of degeneracy is related  to  the  singularity  of  the  state  transition 
matrix,  another  to  the  rank  of  the  observation  noise  and  invariant  direc- 
tions  of  the  matrix Riccati equation of Kalman filtering.  We  determine  to 
what extent  these  degeneracies are  properties  of  the  output  process. The 
geometric  framervork  also  accommodates  infinite-dimensional  state  spaces, 
and  therefore  the  analysis is not  limited  to  finite-dimensional  sgstems. 

I. INTRODUCTION 

T HIS paper is concerned with stochastic  realization of dis- 
crete-time  stationary  vector  processes  and  the  structural 

properties of the  resulting  stochastic systems. Although  our re- 
sults  provide new insight  into  the  finite-dimensional case, the 
analysis is not restricted to finite-dimensional  systems.  The sig- 
nificance of a  state-space  theory  for  infinite-dimensional  systems 
has  been  stressed  by  many  authors in the  deterministic  context 
[11-[41. 
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The stochastic  realization  problem is the  centerpiece of any 
theory of stochastic  systems.  The  early results in this field of 
study were developed  in  the  context of spectral  factorization  and 
the  positive-real  lemma [5]-[8]. In more  recent  years, however, 
there  has  been  a  trend  toward  a  more  geometric  approach 
[14]-[39]. This  has  several  advantages  from  a  conceptual  point of 
view. First,  there is no need to restrict the  analysis to finite-di- 
mensional  systems:  the  geometric  properties  are  in  general (but 
not always) independent of dimension.  Second, it allows us to 
factor  out,  in  the first analysis. the  properties of realizations 
which  depend  only  on  the  choice of coordinates. In fact, the 
geometric  approach is coordinate-free.  Structural  properties which 
look very complicated  in their coordinate-dependent  form  are 
given geometric  descriptions.  Third,  systems-theoretical  concepts 
such as minimality.  observability. constructibility, etc., can  be 
defined  and  analyzed in geometric  terms. We hasten to stress, 
however, that such theory  does  not replace the classical results. 
Indeed, we shall still need to do spectral factorization. The 
emphasis in the  geometric  approach is on  the  structural  aspects of 
the  problem  rather  than on the  algorithmic  ones,  although  the 
insights  gained  by this analysis may be  helpful  in  providing  better 

In this paper we use the  geometric  format laid out  by  Lindquist 
and Picci  [19]-[24] to develop  a  theory of stochastic  realization 
for  discrete-time processes.  Since much of the  basic  geometry is 
the  same in continuous  and  discrete time. and hence is covered in 
[19]-[24], our emphasis  here is on  structural  properties which are 
unique to the  discrete-time setting, and which  have not  been 
covered elsewhere (such as in the work  by Ruckebusch [28]-[32], 
which  deals  mainly  with  the  discrete-time case). In addition  to 
woiking  out  the details on  difference-equation  representations, 
we consider  questions  concerning  the  manner  in which noise 
enters  into  the  observation  channel  and  the  relations  between 
models with and  without  observation noise. We study  the  types 
of degeneracy which manifest themselves either by  the  transition 
function  being  singular or the observation noise being  deficient  in 
rank. The first type of degeneracy  occurs in the important class 
of moving-average  processes,  whereas  the second one is related to 

algorithms. 
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