ACTS 4302

SOLUTION TO MIDTERM EXAM

Derivatives Markets, Chapters 9, 10, 11, 12, 18.
October 21, 2010 (Thurs)

Problem 1

You are given:
(i) The current exchange rate is $0.011 \$ / ¥$.
(ii) A four-year dollar-denominated European put option on yen with a strike price of $\$ 0.008$ sells for $\$ 0.0005$.
(iii) The continuously compounded risk-free interest rate on dollars is 3%.
(iv) The continuously compounded risk-free interest rate on yen is 1.5%.

Calculate the price of a four-year yen-denominated European put option on dollars with a strike price of $¥ 125$.

Solution. By the Put Call Parity (PCP) for currency options with x_{0} as a spot exchange rate:

$$
\begin{aligned}
& C\left(x_{0}, K, T\right)-P\left(x_{0}, K, T\right)=x_{0} e^{-r_{f} T}-K e^{-r_{d} T} \\
& C=0.011 \cdot e^{-0.015 \cdot 4}-0.008 \cdot e^{-0.03 \cdot 4}+0.0005=0.003764046
\end{aligned}
$$

By the Call-Put relationship in "foreign" and "domestic" currency:

$$
P_{f}\left(\frac{1}{x_{0}}, \frac{1}{K}, T\right)=\frac{1}{K} \cdot \frac{1}{x_{0}} C_{d}\left(x_{0}, K, T\right)
$$

Hence, the price of a four-year yen-denominated European put option on dollars with a strike price of $\frac{1}{0.008}=¥ 125$ is

$$
P_{¥}=\frac{1}{0.008} \cdot \frac{1}{0.011} \cdot 0.003764046=42.77
$$

Problem 2

You are given:
(i) $\mathrm{C}(\mathrm{K}, \mathrm{T})$ denotes the current price of a K-strike T-year European call option on a nondividendpaying stock.
(ii) $\mathrm{P}(\mathrm{K}, \mathrm{T})$ denotes the current price of a K-strike T-year European put option on the same stock.
(iii) S denotes the current price of the stock.
(iv) The continuously compounded risk-free interest rate is r .

Which of the following is (are) correct?
(I) $0 \leq C(50, T)-C(55, T) \leq 5 e^{-r T}$
(II) $50 e^{-r T} \leq P(45, T)-C(50, T)+S \leq 55 e^{-r T}$
(III) $45 e^{-r T} \leq P(45, T)-C(50, T)+S \leq 50 e^{-r T}$

Solution. Since the maximum possible value of the difference between the two calls is:

$$
\max \left(C\left(K_{1}\right)-C\left(K_{2}\right)\right)=e^{-r T}\left(K_{2}-K_{1}\right)
$$

using $K_{1}=50$ and $K_{2}=55$, we have:

$$
C(50, T)-C(55, T) \leq 5 e^{-r T}
$$

Since by "direction property": if $K_{1} \leq K_{2}$ then

$$
C\left(K_{1}\right) \geq C\left(K_{2}\right)
$$

again using $K_{1}=50$ and $K_{2}=55$, we have

$$
C(50, T)-C(55, T) \geq 0
$$

Therefore, I is true.
By the Put Call Parity for a nondividend paying stock:

$$
C(S, K, T)-P(S, K, T)=S-K e^{-r T} \Leftrightarrow P(S, K, T)-C(S, K, T)+S=K e^{-r T}
$$

For $K=50$, the equality becomes:

$$
P(S, 50, T)-C(S, 50, T)+S=50 e^{-r T}
$$

Since by "direction property": if $K_{1} \leq K_{2}$ then

$$
P\left(K_{1}\right) \leq P\left(K_{2}\right)
$$

using $K_{1}=45$ and $K_{2}=50$, we have:

$$
P(45) \leq P(50) \Rightarrow P(S, 45, T)-C(S, 50, T)+S \leq 50 e^{-r T}
$$

On the other hand, for $K=45$, the Put Call Parity becomes:

$$
P(S, 45, T)-C(S, 45, T)+S=45 e^{-r T}
$$

Since by "direction property": if $K_{1} \leq K_{2}$ then

$$
C\left(K_{1}\right) \geq C\left(K_{2}\right)
$$

using $K_{1}=45$ and $K_{2}=50$, we have:

$$
C(50) \leq C(45) \Rightarrow P(S, 45, T)-C(S, 50, T)+S \geq 45 e^{-r T}
$$

Therefore, III is true. Thus, II is not true.

Problem 3

Assume the Black-Scholes framework.
Eight months ago, an investor borrowed money at the risk-free interest rate to purchase a one-year 75 -strike European call option on a nondividend-paying stock. At that time, the price of the call option was 8 .
Today, the stock price is 85 . The investor decides to close out all positions.
You are given:
(i) The continuously compounded risk-free interest rate is 5%.
(ii) The stock's volatility is 26%.

Calculate the eight-month holding profit.
Solution. 8 months after purchasing the option, the remaining time to expiration is 4 months. We are given: Eur. call, $t=\frac{1}{3}, S=85, K=75, \sigma=0.26, r=0.05, \delta=0$.

$$
\begin{aligned}
& C=S e^{-\delta t} N\left(d_{1}\right)-K e^{-r t} N\left(d_{2}\right), \text { where } \\
& d_{1}=\frac{\ln (S / K)+\left(r-\delta+\frac{1}{2} \sigma^{2}\right) t}{\sigma \sqrt{t}}=\frac{\ln \frac{85}{75}+\left(0.05-0+0.5 \cdot 0.26^{2}\right) \frac{1}{3}}{0.26 \sqrt{\frac{1}{3}}}=\frac{0.1531}{0.1501}=1.01989 \approx 1.02 \\
& N\left(d_{1}\right)=N(1.02)=0.8461 \\
& d_{2}=d_{1}-\sigma \sqrt{t}=1.01989-0.1501=0.8698 \approx 0.87 \\
& N\left(d_{2}\right)=N(0.87)=0.8078 \\
& K e^{-r t}=75 e^{-0.05 \cdot \frac{1}{3}}=73.7604 \\
& S e^{-\delta t}=85 \\
& C=85 \cdot 0.8461-73.7604 \cdot 0.8078=71.9185-59.5836=12.3349
\end{aligned}
$$

Therefore, the holding profit is:

$$
12.3349-8 \cdot e^{0.05 \cdot \frac{2}{3}}=12.3349-8.2712=4.0637 \approx 4.06
$$

Problem 4

Assume the Black-Scholes framework holds. Consider an option on a stock.
You are given the following information at time 0 :
(i) The stock price is $\mathrm{S}(0)$, which is greater than 80 .
(ii) The option price is 2.34 .
(iii) The option delta is -0.181
(iv) The option gamma is 0.035 .

The stock price changes to 86.00 . Using the delta-gamma approximation, you find that the option price changes to 2.21 .
Determine $\mathrm{S}(0)$.
Solution. Delta-gamma approximation

$$
C\left(S_{t+h}\right)=C\left(S_{t}\right)+\Delta \epsilon+\frac{1}{2} \Gamma \epsilon^{2} \Leftrightarrow C\left(S_{t+h}\right)-C\left(S_{t}\right)=\Delta \epsilon+\frac{1}{2} \Gamma \epsilon^{2}, \epsilon=S_{t+h}-S_{t}
$$

Thus:

$$
\begin{aligned}
& 2.21-2.34=-0.181 \epsilon+0.5 \cdot 0.035 \epsilon^{2} \\
& 0.0175 \epsilon^{2}-0.181 \epsilon+0.13=0 \\
& D=0.181^{2}-4 \cdot 0.0175 \cdot 0.13=0.023661=0.1538^{2} \\
& \epsilon_{1}=\frac{0.181+0.1538}{2 \cdot 0.0175}=9.5663 \text { or } \epsilon_{2}=\frac{0.181-0.1538}{2 \cdot 0.0175}=0.7765
\end{aligned}
$$

Since $S(0)>80, \epsilon=86-S(0)<86-80=6$. Therefore, $\epsilon=0.7765$ and

$$
S(0)=86-0.7765=85.2235
$$

Problem 5

A nondividend paying stock's price is currently 40. It is known that at the end of one month the stock's price will be either 42 or 38 . The continuously compounded risk-free rate is 0.08 . Assume that the expected return on the stock is 10% as opposed to the risk-free rate. What is the true discount rate (rate of return) for the one-month European call option with a strike price of 39 ?

Solution.

We are given: $T=\frac{1}{12}, n=1, S=40, K=39, S_{u}=42, S_{d}=38, \alpha=0.1, r=0.08, \delta=0$. We need to find γ.
The stock tree:

The call tree:

Note that

$$
u=\frac{42}{40}=1.05 \text { and } d=\frac{38}{40}=0.95
$$

Using equation that connects p and p^{*} :

$$
e^{-\gamma h}\left(p C_{u}+(1-p) C_{d}\right)=e^{-r h}\left(p^{*} C_{u}+\left(1-p^{*}\right) C_{d}\right)
$$

Since $C_{d}=0$,

$$
e^{-\gamma h} p=e^{-r h} p^{*} \Leftrightarrow \gamma=-\frac{1}{h} \ln \frac{e^{-r h} p^{*}}{p}
$$

Using formulas for p and p^{*} :

$$
\begin{aligned}
& p=\frac{e^{(\alpha-\delta) h}-d}{u-d}=\frac{e^{0.1 \cdot \frac{1}{12}}-0.95}{1.05-0.95}=0.5837 \\
& p^{*}=\frac{e^{(r-\delta) h}-d}{u-d}=\frac{e^{0.08 \cdot \frac{1}{12}}-0.95}{0.1}=0.5669
\end{aligned}
$$

Therefore,

$$
\gamma=-12 \ln \frac{e^{-0.08 \cdot \frac{1}{12}} 0.5669}{0.5837}=0.4303
$$

Problem 6

A stock's price follows a lognormal model. You are given:
(i) The initial price is 90 .
(ii) $\alpha=0.12$.
(iii) $\delta=0.06$.
(iv) $\sigma=0.3$.

Construct a 92% confidence interval for the price of the stock at the end of five years.
Solution. The lognormal parameters m and v for the distribution of the stock price after five years are

$$
\begin{aligned}
& m=\left(\alpha-\delta-0.5 \sigma^{2}\right) t=\left(0.12-0.06-0.5 \cdot 0.3^{2}\right) 5=0.015 \cdot 5=0.075 \\
& v=\sigma \sqrt{t}=0.3 \sqrt{5}=0.6708
\end{aligned}
$$

If $\mathrm{Z} \in N\left(m, v^{2}\right)$, then the $100(1-\alpha) \%$ confidence interval is defined to be

$$
\begin{aligned}
& \left(m-z_{\alpha / 2} v, m+z_{\alpha / 2} v\right), \text { where } z_{\alpha / 2} \text { is the number such that } \\
& P\left[Z>z_{\alpha / 2}\right]=\frac{\alpha}{2}
\end{aligned}
$$

In our case $\alpha=0.08 \Rightarrow \frac{\alpha}{2}=0.04$ and

$$
P\left[Z>z_{0.04}\right]=0.04 \Leftrightarrow 1-P\left[Z<z_{0.04}\right]=0.04 \Leftrightarrow P\left[Z<z_{0.04}\right]=0.96 \Leftrightarrow z_{0.04}=1.75
$$

The confidence interval is

$$
\left(m-z_{\alpha / 2} v, m+z_{\alpha / 2} v\right)=(0.075-1.75 \cdot 0.6708,0.075+1.75 \cdot 0.6708)=(-1.0989,1.2489)
$$

Exponentiating, we get

$$
\left(e^{-1.0989}, e^{1.2489}\right)=(0.3332,3.4865)
$$

Multiplying by the initial stock price of 90 , the answer is (29.99, 313.79).

Problem 7

For a two-year 100-strike American call option on a stock is modeled with a 2-period binomial tree. You are given:
(i) The initial stock price is 100 .
(ii) The tree is constructed based on forward prices.
(iii) The continuously compounded risk-free interest rate is 5%.
(iv) The stock's volatility is 30%.
(v) The stock pays dividends at the rate of 5%.

Determine the option premium.
Solution. We are given: $T=2, n=2, r=0.05, \gamma=-0.05, S=100, K=100, \sigma=0.3$. We need to find C. Since the binomial tree is constructed using forward prices, we have:

$$
\begin{aligned}
u & =e^{(r-\delta) h+\sigma \sqrt{h}}=e^{(0.05-0.05) \cdot 1+0.3 \sqrt{1}}=e^{0.3}=1.3499 \\
d & =e^{(r-\delta) h-\sigma \sqrt{h}}=e^{(0.05-0.05) \cdot 1-0.3 \sqrt{1}}=e^{-0.3}=0.7408
\end{aligned}
$$

The stock tree:

The call tree:

Using the formula for risk neutral probability:

$$
p^{*}=\frac{1}{1+e^{\sigma \sqrt{h}}}=\frac{1}{1+e^{0.3}}=0.4256,1-p^{*}=0.5744
$$

We now use the formula for pricing an option with risk neutral probability:

$$
\begin{aligned}
& C_{u}=e^{-r h}\left(p^{*} C_{u u}+\left(1-p^{*}\right) C_{u d}\right)=e^{-0.05 \cdot 1} \cdot 0.4256 \cdot 82.21=33.28 \\
& C_{d}=e^{-r h}\left(p^{*} C_{u d}+\left(1-p^{*}\right) C_{d d}\right)=0
\end{aligned}
$$

Note that if the call is exercised at node u, the payoff will be $134.99-100=34.99$. This is greater than 33.28 obtained above, so it is optimal to exercise the call at that point and we'll use $C_{u}=34.99$ in further calculations.

$$
C=e^{-r h}\left(p^{*} C_{u}+\left(1-p^{*}\right) C_{d}\right)=e^{-0.05} \cdot 0.4256 \cdot 34.99=14.164
$$

