CS 6347

Lecture 17

Topic Models and LDA

(some slides by David Blei)
Generative vs. Discriminative Models

• Recall that, in Bayesian networks, there could be many different, but equivalent models of the same joint distribution.

• Although these two models are equivalent (in the sense that they imply the same independence relations), they can differ significantly when it comes to inference/prediction.
Generative vs. Discriminative Models

- **Generative models**: we can think of the observations as being generated by the latent variables
 - Start sampling at the top and work downwards
 - Examples?
Generative vs. Discriminative Models

• Generative models: we can think of the observations as being generated by the latent variables
 – Start sampling at the top and work downwards
 – Examples: HMMs, naïve Bayes, LDA
Generative vs. Discriminative Models

- Discriminative models: most useful for discriminating the values of the latent variables
 - Almost always used for supervised learning
 - Examples?

Discriminative

Generative
Generative vs. Discriminative Models

- Discriminative models: most useful for discriminating the values of the latent variables
 - Almost always used for supervised learning
 - Examples: CRFs
Suppose we are only interested in the prediction task (i.e., estimating $p(Y|X)$)

- Discriminative model: $p(X, Y) = p(X)p(Y|X)$
- Generative model: $p(X, Y) = p(Y)p(X|Y)$
Models of Text Documents

- Bag-of-words models: assume that the ordering of words in a document do not matter
 - This is typically false as certain phrases can only appear together

- Unigram model: all words in a document are drawn uniformly at random from categorical distribution

- Mixture of unigrams model: for each document, we first choose a topic z and then generate words for the document from the conditional distribution $p(w|z)$
 - Topics are just probability distributions over words
Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—How many genes does an organism need to survive? Last week at the genome meeting here,* two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today’s organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn’t be enough.

Although the numbers don’t match precisely, those predictions are not all that far apart,” especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Uppsala University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more genomes are completely mapped and sequenced. “It may be a way of organizing any newly sequenced genome,” explains Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an

Latent Dirichlet Allocation (LDA)

COLD SPRING HARBOR, NEW YORK—How many genes does an organism need to survive? Last week at the Genome Meeting here, two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today’s organisms can be sustained with just 252 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn’t be enough.

Although the numbers don’t match precisely, those predictions “are not all that far apart,” especially in comparison to the 75,000 genes in the human genome, notes Jim Anderson, a researcher at the University of Cambridge. The human genome contains between 50,000 to 80,000 genes.

“It may be a way of organizing any newly sequenced genome,” explains Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing genomes can help determine which genes are present in the human genome and which might be missing.

* Genome Mapping and Sequencing, Cold Spring Harbor, New York, May 9 to 12.

SCIENCE • VOL. 272 • 24 MAY 1996
Latent Dirichlet Allocation (LDA)

- α and β are parameters of the prior distributions over θ and β respectively.
- θ_d is the distribution of topics for document d (real vector of length K).
- β_k is the distribution of words for topic k (real vector of length V).
- $z_{d,n}$ is the topic for the nth word in the dth document.
- $w_{d,n}$ is the nth word of the dth document.
Latent Dirichlet Allocation (LDA)

- **Plate notation**
 - There are $N \cdot D$ different variables that represent the observed words in the different documents
 - There are K total topics (assumed to be known in advance)
 - There are D total documents
Latent Dirichlet Allocation (LDA)

- The only observed variables are the words in the documents
 - The topic for each word, the distribution over topics for each document, and the distribution of words per topic are all latent variables in this model
Latent Dirichlet Allocation (LDA)

- The model contains both continuous and discrete random variables
 - θ_d and β_k are vectors of probabilities
 - $z_{d,n}$ is an integer in $\{1, \ldots, K\}$ that indicates the topic of the nth word in the dth document
 - $w_{d,n}$ is an integer in $\{1, \ldots, V\}$ which indexes over all possible words
Latent Dirichlet Allocation (LDA)

- \(\theta_d \sim \text{Dir}(\alpha) \) where \(\text{Dir}(\alpha) \) is the Dirichlet distribution with parameter vector \(\alpha > 0 \)

- \(\beta_k \sim \text{Dir}(\eta) \) with parameter vector \(\eta > 0 \)

- Dirichlet distribution over \(x_1, \ldots, x_K \) such that \(x_1, \ldots, x_K \geq 0 \) and \(\sum_i x_i = 1 \)

\[
f(x_1, \ldots, x_K; \alpha_1, \ldots, \alpha_K) \propto \prod_i x_i^{\alpha_i-1}
\]

- The Dirichlet distribution is a distribution over probability distributions over \(K \) elements
Latent Dirichlet Allocation (LDA)

- The discrete random variables are distributed via the corresponding probability distributions

\[p(z_{d,n} = k | \theta_d) = (\theta_d)_k \]

\[p(w_{d,n} = v | z_{d,n}, \beta_1, \ldots, \beta_K) = (\beta_{z_{d,n}})_v \]

- Here, \((\theta_d)_k\) is the \(k\)th element of the vector \(\theta_d\) which corresponds to the percentage of document \(d\) corresponding to topic \(k\)

- The joint distribution is then

\[
p(w, z, \theta, \beta | \alpha, \eta) = \prod_k p(\beta_k | \eta) \prod_d \left[p(\theta_d | \alpha) \prod_n p(z_{d,n} | \theta_d) p(w_{d,n} | z_{d,n}, \beta) \right]
\]
Latent Dirichlet Allocation (LDA)

• LDA is a generative model
 – We can think of the words as being generated by a probabilistic process defined by the model
 – How reasonable is the generative model?
Latent Dirichlet Allocation (LDA)

- Inference in this model is NP-hard
- Given the D documents, want to find the parameters that best maximize the joint probability
 - Can use an EM based approach called variational EM
Variational EM

- Recall that the EM algorithm constructed a lower bound using Jensen’s inequality

\[l(\theta) = \sum_{k=1}^{K} \log \sum_{x_{mis_k}} p(x_{obs_k}^k, x_{mis_k} | \theta) \]

\[= \sum_{k=1}^{K} \log \sum_{x_{mis_k}} q_k(x_{mis_k}) \cdot \frac{p(x_{obs_k}^k, x_{mis_k} | \theta)}{q_k(x_{mis})} \]

\[\geq \sum_{k=1}^{K} \sum_{x_{mis_k}} q_k(x_{mis_k}) \log \frac{p(x_{obs_k}^k, x_{mis_k} | \theta)}{q_k(x_{mis_k})} \]
Variational EM

• Performing the optimization over \(q \) is equivalent to computing
 \[p(x_{mis_k}|x_{obs_k}, \theta) \]

• This can be intractable in practice
 – Instead, restrict \(q \) to lie in some restricted class of distributions \(Q \)
 – For example, could make a mean-field assumption
 \[q(x_{mis_k}) = \prod_{i \in mis_k} q_i(x_i) \]

• The resulting algorithm only yields an approximation to the log-likelihood
EM for Topic Models

\[p(w | \alpha, \eta) = \int \prod_k p(\beta_k | \eta) \int \sum_z \prod_d \left[p(\theta_d | \alpha) \prod_n p(z_{d,n} | \theta_d) p(w_{d,n} | z_{d,n}, \beta) \right] d\theta d\beta \]

- To apply variational EM, we write

\[
\log p(w | \alpha, \eta) = \log \int \int \sum_z p(w, z, \theta, \beta | \alpha, \eta) \, d\theta d\beta \\
\geq q(z, \theta, \beta) \log \int \int \sum_z \frac{p(w, z, \theta, \beta | \alpha, \eta)}{q(z, \theta, \beta)} \, d\theta d\beta
\]

where we restrict the distribution \(q \) to be of the following form

\[q(z, \theta, \beta) = \prod_k q(\beta_k | \eta) \prod_d q(\theta_d | \alpha) \prod_n q(z_{d,n}) \]
Example of LDA

<table>
<thead>
<tr>
<th>“Arts”</th>
<th>“Budgets”</th>
<th>“Children”</th>
<th>“Education”</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>MILLION</td>
<td>CHILDREN</td>
<td>SCHOOL</td>
</tr>
<tr>
<td>FILM</td>
<td>TAX</td>
<td>WOMEN</td>
<td>STUDENTS</td>
</tr>
<tr>
<td>SHOW</td>
<td>PROGRAM</td>
<td>PEOPLE</td>
<td>SCHOOLS</td>
</tr>
<tr>
<td>MUSIC</td>
<td>BUDGET</td>
<td>CHILD</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>MOVIE</td>
<td>BILLION</td>
<td>YEARS</td>
<td>TEACHERS</td>
</tr>
<tr>
<td>PLAY</td>
<td>FEDERAL</td>
<td>FAMILIES</td>
<td>HIGH</td>
</tr>
<tr>
<td>MUSICAL</td>
<td>YEAR</td>
<td>WORK</td>
<td>PUBLIC</td>
</tr>
<tr>
<td>BEST</td>
<td>SPENDING</td>
<td>PARENTS</td>
<td>TEACHER</td>
</tr>
<tr>
<td>ACTOR</td>
<td>NEW</td>
<td>SAYS</td>
<td>BENNETT</td>
</tr>
<tr>
<td>FIRST</td>
<td>STATE</td>
<td>FAMILY</td>
<td>MANIGAT</td>
</tr>
<tr>
<td>YORK</td>
<td>PLAN</td>
<td>WELFARE</td>
<td>NAMPHY</td>
</tr>
<tr>
<td>OPERA</td>
<td>MONEY</td>
<td>MEN</td>
<td>STATE</td>
</tr>
<tr>
<td>THEATER</td>
<td>PROGRAMS</td>
<td>PERCENT</td>
<td>PRESIDENT</td>
</tr>
<tr>
<td>ACTRESS</td>
<td>GOVERNMENT</td>
<td>CARE</td>
<td>ELEMENTARY</td>
</tr>
<tr>
<td>LOVE</td>
<td>CONGRESS</td>
<td>LIFE</td>
<td>HAITI</td>
</tr>
</tbody>
</table>
The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $400,000 each. The Juilliard School, where music and the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000 donation, too.
Extensions of LDA

- **Author– Topic model**
 - a_d is the group of authors for the dth document
 - $x_{d,n}$ is the author of the nth word of the dth document
 - θ_a is the topic distribution for author a
 - $z_{d,n}$ is the topic for the nth word of the dth document

The Author-Topic Model for Authors and Documents
Rosen-Zvi et al.
Research in LDA & Topic Models

• Better inference & learning techniques

• More expressive models