CS 6347

Lectures 6 & 7

Approximate MAP Inference
Belief Propagation

- Efficient method for inference on a tree

- Represent the variable elimination process as a collection of messages passed between nodes in the tree
 - The messages keep track of the potential functions produced throughout the elimination process
Belief Propagation (for pairwise MRFs)

\[p(x_1, ..., x_n) = \frac{1}{Z} \prod_{i \in V} \phi_i(x_i) \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j) \]

\[m_{i \rightarrow j}(x_j) = \sum_{x_i} \phi_i(x_i) \psi_{ij}(x_i, x_j) \prod_{k \in N(i) \setminus j} m_{k \rightarrow i}(x_i) \]

where \(N(i) \) is the set of neighbors of node \(i \) in the graph

- Messages are passed in two phases: from the leaves up to the root and then from the root down to the leaves
MAP Inference

• Compute the most likely assignment under the (conditional) joint distribution

\[x^* = \arg \max_x p(x) \]

• Can encode 3-SAT, maximum independent set problem, etc. as a MAP inference problem
Max-Product (for pairwise MRFs)

\[p(x_1, ..., x_n) = \frac{1}{Z} \prod_{i \in V} \phi_i(x_i) \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j) \]

\[m_{i \rightarrow j}(x_j) = \max_{x_i} \left[\phi_i(x_i)\psi_{ij}(x_i, x_j) \prod_{k \in N(i) \setminus j} m_{k \rightarrow i}(x_i) \right] \]

- Guaranteed to produced the correct answer on a tree
- Typical applications do not require computing Z
Max-Product

- To construct the maximizing assignment, we look at the max-marginal produced by the algorithm

\[
\mu_i(x_i) = \frac{1}{Z} \phi_i(x_i) \prod_{k \in N(i)} m_{k \rightarrow i}(x_i)
\]

- Last time, we argued that, on a tree,

\[
\mu_i(x_i) = \max_{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n} p(x_1, \ldots, x_n)
\]
Reparameterization

- The messages passed in max-product can be used to construct a **reparameterization** of the joint distribution

\[
p(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{i \in V} \phi_i(x_i) \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j)
\]

and

\[
p(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{i \in V} \left[\phi_i(x_i) \prod_{k \in N(i)} m_{k \rightarrow i}(x_i) \right] \prod_{(i,j) \in E} \frac{\psi_{ij}(x_i, x_j)}{m_{i \rightarrow j}(x_j)m_{j \rightarrow i}(x_i)}
\]

Reparameterization

\[p(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{i \in V} \left[\phi_i(x_i) \prod_{k \in N(i)} m_{k \rightarrow i}(x_i) \right] \prod_{(i,j) \in E} \frac{\psi_{ij}(x_i, x_j)}{m_{i \rightarrow j}(x_j)m_{j \rightarrow i}(x_i)} \]

- Reparameterizations do not change the partition function, the MAP solution, or the factorization of the joint distribution
 - They push "weight" around between the different factors
- Other reparameterizations are possible/useful
Tree Reparameterization

- On a tree, the joint distribution has a special form

\[p(x_1, \ldots, x_n) = \frac{1}{Z'} \prod_{i \in V} \mu_i(x_i) \prod_{(i,j) \in E} \frac{\mu_{ij}(x_i, x_j)}{\mu_i(x_i)\mu_j(x_j)} \]

- \(\mu_i \) is the max-marginal distribution of the \(i^{th} \) variable and \(\mu_{ij} \) is the max-marginal distribution for the edge \((i, j) \in E\)

- How to express \(\mu_{ij} \) as a function of the messages and the potential functions?
MAP in General MRFs

- While max-product solves the MAP problem on trees, the MAP problem in MRFs is, in general, intractable
 - Don’t expect to be able to solve the problem exactly
 - Will settle for “good” approximations
 - Can use max-product messages as a starting point

- This is an active area of research
 - Advances are constantly being made
Upper Bounds

\[
\begin{align*}
\max_{x_1, \ldots, x_n} p(x_1, \ldots, x_n) &\leq \frac{1}{Z} \prod_{i \in V} \max_{x_i} \phi_i(x_i) \prod_{(i, j) \in E} \max_{x_i, x_j} \psi_{ij}(x_i, x_j)
\end{align*}
\]

• This provides an upper bound on the optimization problem

 – Do other reparameterizations provide better bounds?
Duality

\[L(m) = \frac{1}{Z} \prod_{i \in V} \max_{x_i} \left[\phi_i(x_i) \prod_{k \in N(i)} m_{k \rightarrow i}(x_i) \right] \prod_{(i,j) \in E} \max_{x_i,x_j} \left[\frac{\psi_{ij}(x_i,x_j)}{m_{i \rightarrow j}(x_j) m_{j \rightarrow i}(x_i)} \right] \]

- We construct a dual optimization problem

\[\min_{m} L(m) \geq \max_{x} p(x) \]

- The dual problem is log-convex in the messages

\[L(m)^{\delta} L(m')^{1-\delta} \geq L(\delta m + (1 - \delta)m') \]

Equivalently, log \(L(m) \) is a convex function
Optimizing the Dual

• Minimizing $L(m)$

 – Block coordinate descent: improve the bound by changing only a small subset of the messages at a time (usually look like message-passing algorithms)

 – Subgradient descent: variant of gradient descent for non-differentiable functions

 – Many more methods...
We can also express the MAP problem as a 0,1 integer programming problem

- Convert a maximum of a product into a maximum of a sum by taking logs

- Introduce indicator variables, τ, to represent the chosen assignment
• Introduce variables

\[\tau_i(x_i) \in \{0,1\} \quad \text{for each } i \in V \text{ and } x_i \]

\[\tau_{ij}(x_i, x_j) \in \{0,1\} \quad \text{for each } (i, j) \in E \text{ and } x_i, x_j \]

• The linear objective function is then

\[
\max_{\tau} \sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \phi_i(x_i) + \sum_{(i,j) \in E} \sum_{x_i,x_j} \tau_{ij}(x_i, x_j) \log \psi_{ij}(x_i, x_j)
\]

where the \(\tau \)'s are required to satisfy certain marginalization conditions
Integer Programming

\[
\max_{\tau} \sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \phi_i(x_i) + \sum_{(i,j) \in E} \sum_{x_i, x_j} \tau_{ij}(x_i, x_j) \log \psi_{ij}(x_i, x_j)
\]

such that

\[
\sum_{x_i} \tau_i(x_i) = 1 \quad \text{For all } i \in V
\]

\[
\sum_{x_j} \tau_{ij}(x_i, x_j) = \tau_i(x_i) \quad \text{For all } (i, j) \in E, x_i
\]

\[
\tau_i(x_i) \in \{0,1\} \quad \text{For all } i \in V, x_i
\]

\[
\tau_{ij}(x_i, x_j) \in \{0,1\} \quad \text{For all } (i, j) \in E, x_i, x_j
\]
Integer Programming

\[
\max_{\tau} \sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \phi_i(x_i) + \sum_{(i,j) \in E} \sum_{x_i, x_j} \tau_{ij}(x_i, x_j) \log \psi_{ij}(x_i, x_j)
\]

such that

\[
\begin{align*}
\sum_{x_i} \tau_i(x_i) &= 1 & \text{For all } i \in V \\
\sum_{x_j} \tau_{ij}(x_i, x_j) &= \tau_i(x_i) & \text{For all } (i, j) \in E, x_i \\
\tau_i(x_i) &\in \{0,1\} & \text{For all } i \in V, x_i \\
\tau_{ij}(x_i, x_j) &\in \{0,1\} & \text{For all } (i, j) \in E, x_i, x_j
\end{align*}
\]

These constraints define the vertices of the marginal polytope (set of all valid marginal distributions).
An Example: Independent Sets

What is the integer programming problem corresponding to the uniform distribution over independent sets of a graph $G = (V, E)$?

$$p(x_V) = \frac{1}{Z} \prod_{(i,j) \in E} 1_{x_i + x_j \leq 1}$$

(worked out on the board)
• The integer program can be relaxed into a linear program by replacing the 0,1 integrality constraints with linear constraints

 — This relaxed set of constraints forms the local marginal polytope

 • The τ’s no longer correspond to an achievable marginal distribution, so we call them pseudo-marginals

 — We call it a relaxation because the constraints have been relaxed: all solutions to the IP are contained as solutions of the LP

• Linear programming problems can be solved in polynomial time
Linear Relaxation

\[
\max_{\tau} \sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \phi_i(x_i) + \sum_{(i,j) \in E} \sum_{x_i, x_j} \tau_{ij}(x_i, x_j) \log \psi_{ij}(x_i, x_j)
\]

such that

\[
\sum_{x_i} \tau_i(x_i) = 1 \quad \text{For all } i \in V
\]

\[
\sum_{x_j} \tau_{ij}(x_i, x_j) = \tau_i(x_i) \quad \text{For all } (i,j) \in E, x_i
\]

\[
\tau_i(x_i) \in [0,1] \quad \text{For all } i \in V, x_i
\]

\[
\tau_{ij}(x_i, x_j) \in [0,1] \quad \text{For all } (i,j) \in E, x_i, x_j
\]
An Example: Independent Sets

• What is the linear programming problem corresponding to the uniform distribution over independent sets of a graph \(G = (V, E) \)?

\[
p(x_V) = \frac{1}{Z} \prod_{(i,j) \in E} 1_{x_i + x_j \leq 1}
\]

• The MAP LP is a relaxation of the integer programming problem

 – MAP LP could have a better solution... (example in class)
LP vs. Dual

- Both the LP relaxation and the dual $L(m)$ provide an upper bound on the MAP objective function
 - That is, finding an optimal collection of messages is equivalent to finding the best pseudo-marginals
- In fact, they are equivalent optimization problems: this seems quite surprising because the problems look so different
 - The proof uses the method of Lagrange multipliers (a standard mathematical technique to construct dual optimization problems)
Tightness of the MAP LP

• When is it that solving the MAP LP (or equivalently, the dual optimization) is the same as solving the integer programming problem?

 – We say that there is no duality gap (or that the dual is tight) when this is the case

 – The answer can be expressed as a structural property of the graph