CS 6347

Lecture 10

MCMC Sampling Methods
Last Time

- Sampling from discrete univariate distributions
 - Rejection sampling
 - To sample $p(y)$, draw samples from $p(x', y')$ and reject those with $y \neq y'$
 - Importance sampling
 - Introduce a proposal distribution $q(x)$ whose support contains the support of $p(x, y)$
 - Sample from q and reweight the samples to generate samples from p
Today

• We saw how to sample from Bayesian networks, but how do we sample from MRFs?
 – Can’t even compute $p(x) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)$ without knowing the partition function
 – No well-defined ordering in the model

• To sample from MRFs, we will need fancier forms of sampling
 – So-called Markov Chain Monte Carlo (MCMC) methods
Markov Chains

• A Markov chain is a sequence of random variables $X_1, \ldots, X_n \in S$ such that

$$p(x_{n+1}|x_1, \ldots, x_n) = p(x_{n+1}|x_n)$$

• The set S is called the state space, and $p(X_{n+1} = b|X_n = a)$ is the probability of transitioning from state a to state b at step n

• As a Bayesian network or a MRF, the joint distribution over the first n steps factorizes over a chain
Markov Chains

• When the probability of transitioning between two states does not depend on time, we call it a time homogeneous Markov chain

 – Represent it by a $|S| \times |S|$ transition matrix P

 • $P_{ij} = p(X_{n+1} = j \mid X_n = i)$

 • P is a **stochastic** matrix (all rows sum to one)

 – Draw it as a directed graph over the state space with an arrow from $a \in S$ to $b \in S$ labelled by the probability of transitioning from a to b
Markov Chains

• Given some initial distribution over states $p(x_1)$

 – Represent $p(x_1)$ as a length $|S|$ vector, π_1

 – The probability distribution after n steps is given by

 $$\pi_n = \pi_1 P^n$$

• Typically interested in the long term (i.e., what is the state of the system when n is large)

• In particular, we are interested in steady-state distributions μ such that $\mu = \mu P$

 – A given chain may or may not converge to a steady state
Markov Chains

- Theorem: every \textbf{irreducible, aperiodic} Markov chain converges to a unique steady state distribution independent of the initial distribution

 - Irreducible: the directed graph of transitions is strongly connected (i.e., there is a directed path between every pair of nodes)

 - Aperiodic: $p(X_n = i | X_1 = i) > 0$ for all large enough n

- If the state graph is strongly connected and there is a non-zero probability of remaining in any state, then the chain is irreducible and aperiodic
Detailed Balance

• Lemma: a vector of probabilities μ is a stationary distribution of the MC with transition matrix P if for all i and j,

$$\mu_i P_{ij} = \mu_j P_{ji}$$

Proof:

$$(\mu P)_j = \sum_i \mu_i P_{ij} = \sum_i \mu_j P_{ji} = \mu_j$$

So, $\mu P = \mu$
MCMC Sampling

• Markov chain Monte Carlo sampling
 – Construct a Markov chain where the stationary distribution is the distribution we want to sample from
 – Use the Markov chain to generate samples from the distribution
 – Combine with the same Monte Carlo estimation strategy as before
 – Will let us sample conditional distributions easily as well!
Gibbs Sampling

- Choose an initial assignment x^0
- Fix an ordering of the variables (any order is fine)
- For each $j \in V$ in order
 - Draw a sample z from $p(x_j | x_1^{t+1}, ..., x_{j-1}^{t+1}, x_{j+1}^t, ..., x_{|V|}^t)$
 - Set $x_j^{t+1} = z$
- Set $t \leftarrow t + 1$ and repeat
Gibbs Sampling

• If \(p(x) = \frac{1}{Z} \prod_c \psi_c(x_c) \), we can use the conditional independence assumptions to sample from \(p(x_j | x_{N(j)}) \)

 – This lets us exploit the graph structure for sampling

 – For Bayesian networks, reduces to \(p(X_j | x_{MB(j)}) \) where \(MB(j) \) is \(j \)'s Markov blanket (\(j \)'s parents, children, and its children's parents)
(1) Sample from \(p(x_A|x_B = 0, x_C = 0, x_D = 0) \)

Using Bayes rule,
\[
p(x_A|x_B = 0, x_C = 0) \propto p(x_A)p(x_C = 0|x_A, x_B = 0)
\]
\[
p(x_A = 0|x_B = 0, x_C = 0) \propto .3 \cdot .1 = .03
\]
\[
p(x_A = 1|x_B = 0, x_C = 0) \propto .7 \cdot .01 = .007
\]
(1) Sample from $p(x_A | x_B = 0, x_C = 0, x_D = 0)$

Using Bayes rule, $p(x_A | x_B = 0, x_C = 0) \propto p(x_A)p(x_C = 0 | x_A, x_B = 0)$

$p(x_A = 0 | x_B = 0, x_C = 0) \propto .3 \cdot .1 \rightarrow .811$

$p(x_A = 1 | x_B = 0, x_C = 0) \propto .7 \cdot .01 \rightarrow .189$
(1) Sample from $p(x_B|x_A = 0, x_C = 0, x_D = 0)$

Using Bayes rule, $p(x_B|x_A = 0, x_C = 0) \propto p(x_B)p(x_C = 0|x_A = 0, x_B)$

$p(x_B = 0|x_A = 0, x_C = 0) \propto .4 \cdot .1 = .04$

$p(x_B = 1|x_A = 0, x_C = 0) \propto .6 \cdot .2 = .12$
Gibbs Sampling

(1) Sample from \(p(x_B | x_A = 0, x_C = 0, x_D = 0) \)

Using Bayes rule, \(p(x_B | x_A = 0, x_C = 0) \propto p(x_B)p(x_C = 0 | x_A = 0, x_B) \)

\(p(x_B = 0 | x_A = 0, x_C = 0) \propto .4 \cdot .1 \rightarrow .25 \)

\(p(x_B = 1 | x_A = 0, x_C = 0) \propto .6 \cdot .2 \rightarrow .75 \)
Gibbs Sampling

(1) Sample from \(p(x_C|x_A = 0, x_B = 1, x_D = 0) \)
Using Bayes rule, \(p(x_C|x_A = 0, x_B = 1, x_D = 0) \propto p(x_C|x_A = 0, x_B = 1)p(x_D = 0|x_C) \)
\(p(x_C = 0|x_A = 0, x_B = 1, x_D = 0) \propto 0.2 \cdot 0.3 = 0.06 \)
\(p(x_C = 1|x_A = 0, x_B = 1, x_D = 0) \propto 0.8 \cdot 0.4 = 0.32 \)
Gibbs Sampling

(1) Sample from $p(x_C | x_A = 0, x_B = 1, x_D = 0)$

Using Bayes rule, $p(x_C | x_A = 0, x_B = 1, x_D = 0) \propto p(x_C | x_A = 0, x_B = 1)p(x_D = 0 | x_C)$

$p(x_C = 0 | x_A = 0, x_B = 1, x_D = 0) \propto 0.2 \cdot 0.3 \rightarrow 0.158$

$p(x_C = 1 | x_A = 0, x_B = 1, x_D = 0) \propto 0.8 \cdot 0.4 \rightarrow 0.842$
Gibbs Sampling

Order: A, B, C, D, A, B, C, D, ...

(1) Sample from $p(x_D \mid x_C = 1)$

$p(x_D = 0 \mid x_C = 1) = 0.4$

$p(x_D = 1 \mid x_C = 1) = 0.6$
Gibbs Sampling

(1) Sample from $p(x_D | x_C = 1)$

$p(x_D = 0 | x_C = 1) = .4$

$p(x_D = 1 | x_C = 1) = .6$
Gibbs Sampling

Order: A, B, C, D, A, B, C, D, ...

(2) Repeat the same process to generate the next sample
Gibbs Sampling

- Gibbs sampling forms a Markov chain

- The states of the chain are the assignments and the probability of transitioning from an assignment y to an assignment z (in the order $1, \ldots, n$)

\[
p(z_1 | y_{V \setminus \{1\}})p(z_2 | y_{V \setminus \{1,2\}}, z_1) \ldots p(z_n | z_{V \setminus \{n\}})
\]

- If there are no zero probability states, then the chain is irreducible and aperiodic (hence it converges)

- The stationary distribution is $p(x)$ – proof?
Gibbs Sampling

• Recall that it takes time to reach the steady state distribution from an arbitrary starting distribution

• The **mixing time** is the number of samples that it takes before the approximate distribution is close to the steady state distribution

 – In practice, this can take 1000s of iterations (or more)

 – We typically ignore the samples for a set amount of time called the **burn in phase** and then begin producing samples
Gibbs Sampling

• We can use Gibbs sampling for MRFs as well!
 – We don’t need to compute the partition function to use it (why not?)
 – Many “real” MRFs will have lots of zero probability assignments

• If you don’t start with a non-zero assignment, the algorithm can get stuck (changing a single variable may not allow you to escape)

• Might not be possible to go between all possible non-zero assignments by only flipping one variable at a time
This idea of choosing a transition probability between new assignments and the current assignments can be generalized beyond the transition probabilities used in Gibbs sampling.

Pick some transition function $q(x'|x)$ that depends on the current state x.

- We would ideally want the probability of transitioning between any two non-zero probability states to be positive.
Metropolis-Hastings Algorithm

• Choose an initial assignment x
• Sample an assignment z from the proposal distribution $q(x'|x)$
• Sample r uniformly from $[0,1]$
• If $r < \min\left\{1, \frac{p(z)q(x|z)}{p(x)q(z|x)}\right\}$
 – Set x to z
• Else
 – Leave x unchanged
Metropolis-Hastings Algorithm

- Choose an initial assignment x
- Sample an assignment z from the proposal distribution $q(x'|x)$
- Sample r uniformly from $[0,1]$
- If $r < \min\left\{1, \frac{p(z)q(x|z)}{p(x)q(z|x)}\right\}$
 - Set x to z
- Else
 - Leave x unchanged

$\frac{p(z)}{q(z|x)}$ and $\frac{p(x)}{q(x|z)}$ are like importance weights

The acceptance probability is then a function of the ratio of the importance of z and the importance of x
• The Metropolis-Hastings algorithm produces a Markov chain that converges to \(p(x) \) from any initial distribution (assuming that it is irreducible and aperiodic)

• What are some choices for \(q(x'|x) \)?
 – Use an importance sampling distribution
 – Use a uniform distribution (like a random walk)

• Gibbs sampling is a special case of this algorithm where the proposal distribution corresponds to the transition matrix