CS 6347

Lecture 17

Introduction to Structure Learning
Structure Learning

• We have been focusing on parameter learning:
 – E.g., given a graph structure, find the parameters that maximize the log-likelihood

• In practice, the structure of the graph may not be known and may need to be learned from the data
 – For Bayesian networks, we may be only given samples and asked to make predictions
Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
BN Structure Learning

- Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities.

![Bayesian Network Diagram]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Probability Tables**

<table>
<thead>
<tr>
<th>A</th>
<th>P(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4/5</td>
</tr>
<tr>
<td>1</td>
<td>1/5</td>
</tr>
</tbody>
</table>

| A | B | P(B|A) |
|---|---|------|
| 0 | 0 | 3/4 |
| 0 | 1 | 1/4 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

| B | D | P(D|B) |
|---|---|------|
| 0 | 0 | 1/4 |
| 0 | 1 | 3/4 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

| A | C | P(C|A) |
|---|---|------|
| 0 | 0 | 1/4 |
| 0 | 1 | 3/4 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
BN Structure Learning

• Recall that for a fixed Bayesian network with fully observed data, the MLE of the conditional probability tables was given by the empirical probabilities.
BN Structure Learning

• Which model should be preferred?
BN Structure Learning

• Which model should be preferred?

Which one has the highest log-likelihood given the data?
BN Structure Learning

- Which model should be preferred?

Which one has the highest log-likelihood given the data?
BN Structure Learning

• Determining the structure that maximizes the log-likelihood is not too difficult
 – A complete DAG always maximizes the log-likelihood
 – This almost certainly results in overfitting

• Alternative is to attempt to learn simple structures
 – Approach 1: Optimize the log-likelihood over simple graphs
 – Approach 2: Add a penalty term to the log-likelihood
Adding Edges Increases the MLE

Let p' be the empirical probability distribution

$$\frac{\ell_2 - \ell_1}{M} = \frac{1}{M} \sum_m \log \frac{p'(x_D^m | x_B^m, x_C^m)}{p'(x_D^m | x_B^m)}$$

$$= \sum_x p'(x_B, x_C, x_D) \log \frac{p'(x_D | x_B, x_C)}{p'(x_D | x_B)}$$

$$= \sum_x p'(x_B, x_C, x_D) \log \frac{p'(x_B, x_C, x_D)}{p'(x_C | x_B)p'(x_D | x_B)p'(x_B)}$$

$$= d(p'(x_B, x_C, x_D) || p'(x_C | x_B)p'(x_D | x_B)p'(x_B)) \geq 0$$
Chow-Liu Trees

• Suppose that we want to find the best tree-structured BN that represents a given joint probability distribution
 – Find the tree-structured BN that maximizes the likelihood

• Let’s consider the log-likelihood of a fixed tree T
 – Assume that the edges are directed so that each node has exactly one parent
Chow-Liu Trees

For a fixed tree:

$$\max_{\theta} \log l(\theta, T) = \sum_{i \in V(T)} \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_{\text{parent}(i)}}}$$

$$= \sum_{i \in V(T)} \left[\sum_{x_i} N_{x_i} \log N_{x_i} \right] + \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_i} N_{x_{\text{parent}(i)}}}$$

$$= \left[\sum_{i \in V} \sum_{x_i} N_{x_i} \log N_{x_i} \right] + \left[\sum_{(i, j) \in E(T)} \sum_{x_i, x_j} N_{x_i, x_j} \log \frac{N_{x_i, x_j}}{N_{x_i} N_{x_j}} \right]$$
Chow-Liu Trees

For a fixed tree:

$$\max_{\theta} \log l(\theta, T) = \sum_{i \in V(T)} \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_{\text{parent}(i)}}}$$

$$= \sum_{i \in V(T)} \left[\sum_{x_i} N_{x_i} \log N_{x_i} + \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_i} N_{x_{\text{parent}(i)}}} \right]$$

$$= \left[\sum_{i \in V} \sum_{x_i} N_{x_i} \log N_{x_i} \right] + \left[\sum_{(i, j) \in E(T)} \sum_{x_i, x_j} N_{x_i, x_j} \log \frac{N_{x_i, x_j}}{N_{x_i} N_{x_j}} \right]$$

Doesn’t depend on the selected tree!
Chow-Liu Trees

For a fixed tree:

\[
\max_{\theta} \log l(\theta, T) = \sum_{i \in V(T)} \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_{\text{parent}(i)}}}
\]

\[
= \sum_{i \in V(T)} \left[\sum_{x_i} N_{x_i} \log N_{x_i} + \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_i} N_{x_{\text{parent}(i)}}} \right]
\]

\[
= \left[\sum_{i \in V} \sum_{x_i} N_{x_i} \log N_{x_i} \right] + \left[\sum_{(i, j) \in E(T)} \sum_{x_i, x_j} N_{x_i, x_j} \log \frac{N_{x_i, x_j}}{N_{x_i} N_{x_j}} \right]
\]

This is the (empirical) **mutual information**, usually denoted \(I(x_i; x_j) \)
Chow-Liu Trees

• To maximize the log-likelihood, it then suffices to choose the tree T that maximizes

$$\max_T \sum_{i,j} I(x_i; x_j)$$

• This problem can be solved by finding the maximum weight spanning tree in the complete graph with edge weight w_{ij} given by the mutual information over the edge (i, j)

 – Greedy algorithm works: at each step, pick the largest remaining edge that does not form a cycle when added to the already selected edges
Chow-Liu Trees

- To use this technique for learning, we simply compute the mutual information for each edge using the empirical probability distributions and then find the max-weight spanning tree.

- As a result, we can learn tree-structured BNs in polynomial time.

 - Can we generalize this to all DAGs?
Chow-Liu Trees: Example

- Edge weights correspond to empirical mutual information for the earlier samples
Chow-Liu Trees: Example

- Edge weights correspond to empirical mutual information for the earlier samples
Chow-Liu Trees: Example

• Any directed tree (where each node has one parent) over these edges maximizes the log-likelihood

 – Why doesn’t the direction matter?
Approach 2: Penalized Likelihood

- Add a penalty term to the log-likelihood that can depend on the number of samples and the chosen structure

\[\ell(G, \theta) = \sum_{m} \log p_G(x^m | \theta) - \eta(M)Dim(G) \]

- \(\eta(M) \) is only a function of the number of samples
 - \(\eta(M) = \text{constant} \) called the Akaike information criterion
 - \(\eta(M) = \frac{\log(M)}{2} \) called the Bayesian information criterion

- \(Dim(G) \) is the number of parameters needed to represent \(G \)