Approximate Marginal Inference

• Last time: approximate MAP inference
 • Reparameterizations
 • Linear programming over the local marginal polytope
• Approximate marginal inference (e.g., \(p(y_i|x) \))
 • Sampling methods (MCMC, etc.)
 • Variational methods (loopy belief propagation, TRW, etc.)
• In order to perform approximate marginal inference, we will try to find distributions that approximate the true distribution.

 • Ideally, the marginals of the approximating distribution should be easy to compute.

• For this, we need a notion of closeness of distributions.
KL Divergence

\[D(p||q) = \sum_x p(x) \log \frac{p(x)}{q(x)} \]

- Called the Kullback-Leibler divergence
- \(D(p||q) \geq 0 \) with equality if and only if \(p = q \)
- Not symmetric, \(D(p||q) \neq D(q||p) \)
Jensen's Inequality

- Let $f(x)$ be a convex function and $a_i \geq 0$ such that $\sum_i a_i = 1$

$$\sum_i a_i f(x_i) \geq f \left(\sum_i a_i x_i \right)$$

- Useful inequality when dealing with convex/concave functions

- When does equality hold?
KL Divergence

\[
D(p||q) = \sum_x p(x) \log \frac{p(x)}{q(x)}
\]

- Suppose that we want to approximate the distribution \(p\) with some other distribution \(q\) in some family of distributions \(Q\).
- Could minimize KL divergence in one of two ways:
 - \(\arg\ min_{q \in Q} D(p||q)\)
 - \(\arg\ min_{q \in Q} D(q||p)\)
KL Divergence

\[D(p||q) = \sum_x p(x) \log \frac{p(x)}{q(x)} \]

- Suppose that we want to approximate the distribution \(p \) with some other distribution \(q \) in some family of distributions \(Q \)

- Could minimize KL divergence in one of two ways
 - \(\arg \min_{q \in Q} D(p||q) \) \hspace{1cm} \text{Called the M-projection}
 - \(\arg \min_{q \in Q} D(q||p) \) \hspace{1cm} \text{Called the I-projection}
KL Divergence

\[D(p||q) = \sum_x p(x) \log \frac{p(x)}{q(x)} \]

- Suppose that we want to approximate the distribution \(p \) with some other distribution \(q \) in some family of distributions \(Q \)

- Could minimize KL divergence in one of two ways

 - \(\arg \min_{q \in Q} D(p||q) \)
 As hard as the original inference problem

 - \(\arg \min_{q \in Q} D(q||p) \)
 Potentially easier...
Variational Inference

Let's let $p(x) = \frac{1}{Z} \prod_c \psi_c(x_c)$ be the distribution that we want to approximate with distribution q

$$D(q||p) = \sum_x q(x) \log \frac{q(x)}{p(x)}$$

$$= \sum_x q(x) \log q(x) - \sum_x q(x) \log p(x)$$

$$= -H(q) - \sum_x q(x) \log p(x)$$

$$= -H(q) + \log Z - \sum_x \sum_c q(x) \log \psi_c(x_c)$$

$$= -H(q) + \log Z - \sum_c \sum_{x_c} q_c(x_c) \log \psi_c(x_c)$$
Variational Inference

- Let's let $p(x) = \frac{1}{Z} \prod_c \psi_c(x_c)$ be the distribution that we want to approximate with distribution q

$$D(q||p) = \sum_x q(x) \log \frac{q(x)}{p(x)}$$

$$= \sum_x q(x) \log q(x) - \sum_x q(x) \log p(x)$$

$$= -H(q) - \sum_x q(x) \log p(x)$$

$$= -H(q) + \log Z - \sum_x \sum_c q(x) \log \psi_c(x_c)$$

$$= -H(q) + \log Z - \sum_c \sum_{x_c} q_c(x_c) \log \psi_c(x_c)$$

Where have we seen this before?
MAP Integer Program

\[
\max_{\tau} \sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \phi_i(x_i) + \sum_{(i,j) \in E} \sum_{x_i,x_j} \tau_{ij}(x_i, x_j) \log \psi_{ij}(x_i, x_j)
\]

such that

\[
\sum_{x_i} \tau_i(x_i) = 1 \quad \text{For all } i \in V
\]

\[
\sum_{x_j} \tau_{ij}(x_i, x_j) = \tau_i(x_i) \quad \text{For all } (i,j) \in E, x_i
\]

\[
\tau_i(x_i) \in \{0,1\} \quad \text{For all } i \in V, x_i
\]

\[
\tau_{ij}(x_i, x_j) \in \{0,1\} \quad \text{For all } (i,j) \in E, x_i, x_j
\]
Variational Inference

- Let's let \(p(x) = \frac{1}{Z} \prod_c \psi_c(x_c) \) be the distribution that we want to approximate with distribution \(q \)

\[
D(q||p) = -H(q) + \log Z - \sum_c \sum_{x_c} q_c(x_c) \log \psi_c(x_c)
\]

- Using the observation that the KL divergence is non-negative

\[
\log Z \geq H(q) + \sum_c \sum_{x_c} q_c(x_c) \log \psi_c(x_c)
\]
Let's let $p(x) = \frac{1}{Z} \prod_c \psi_c(x_c)$ be the distribution that we want to approximate with distribution q

$$D(q||p) = -H(q) + \log Z - \sum_C \sum_{x_C} q_C(x_C) \log \psi_C(x_C)$$

Using the observation that the KL divergence is non-negative

$$\log Z \geq H(q) + \sum_C \sum_{x_C} q_C(x_C) \log \psi_C(x_C)$$

This lower bound holds for any q
Variational Inference

- Let's let $p(x) = \frac{1}{Z} \prod_c \psi_c(x_c)$ be the distribution that we want to approximate with distribution q

$$D(q||p) = -H(q) + \log Z - \sum_c \sum_{x_c} q_c(x_c) \log \psi_c(x_c)$$

- Using the observation that the KL divergence is non-negative

$$\log Z \geq H(q) + \sum_c \sum_{x_c} q_c(x_c) \log \psi_c(x_c)$$

Maximizing this over q gives equality
Variational Inference

\[\log Z \geq H(q) + \sum \sum q_c(x_c) \log \psi_c(x_c) \]

- The right hand side is a concave function of \(q \)
- Despite that, this optimization problem is **hard**! (surprised?)
 - Exponentially many distributions, \(q(x) \)
 We need a more compact way to express them
 - Computing the entropy is non-trivial
Variational Inference

\[
\log Z \geq H(q) + \sum_C \sum_{x_C} q_C(x_C) \log \psi_c(x_c)
\]

- Two kinds of methods that are used to deal with these difficulties
 - Mean-field methods: assume that the approximating distribution factorizes as
 \(q(x) \propto \prod_{i \in V} q_i(x_i) \)
 - Relaxation based methods: replace hard pieces of the optimization with easier optimization problems
 - Similar to the MAP IP -> MAP LP relaxation
Relaxation Approach

\[
\log Z \geq H(q) + \sum_{C} \sum_{x_C} q_C(x_C) \log \psi_C(x_C)
\]

- To handle the representation problem, we can use the same LP relaxation trick that we did before.

- For each \(\tau \) in the marginal polytope, we can rewrite the RHS as

\[
\log Z \geq H(\tau) + \sum_{C} \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)
\]
Relaxation Approach

\[
\log Z \geq H(q) + \sum_{C} \sum_{x_C} q_C(x_C) \log \psi_C(x_C)
\]

- To handle the representation problem, we can use the same LP relaxation trick that we did before
- For each \(\tau \) in the marginal polytope, we can rewrite the RHS as

\[
\log Z \geq H(\tau) + \sum_{C} \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)
\]

Maximum entropy over all \(\tau \) with these marginals
Relaxation Approach

\[
\max_{\tau \in \mathcal{M}} H(\tau) + \sum_C \sum_{x_C} \tau_C(x_C) \log \psi_c(x_c)
\]

- Marginal polytope, \(M \), is intractable to optimize over
- Use the local polytope, \(T \)

\[
\sum_{x_C \setminus i} \tau_C(x_C) = \tau_i(x_i) \text{ for all } C, i \in V
\]

\[
\sum_{x_i} \tau_i(x_i) = 1 \text{ for all } i \in V
\]
Relaxation Approach

$$\max_{\tau \in T} H(\tau) + \sum_C \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)$$

- Even with the polytope relaxation, the optimization problem still remains challenging as computing the entropy remains nontrivial
 - We will need to approximate the entropy as well
 - For which distributions is it easy to compute the entropy?
Tree Reparameterization

• On a tree, the joint distribution factorizes in a special way

\[
p(x_1, ..., x_n) = \frac{1}{Z'} \prod_{i \in V} p_i(x_i) \prod_{(i,j) \in E} \frac{p_{ij}(x_i, x_j)}{p_i(x_i)p_j(x_j)}
\]

• \(p_i\) is the marginal distribution of the \(i^{th}\) variable and \(p_{ij}\) is the max-marginal distribution for the edge \((i,j) \in E\)

• This applies to tree-structured factor graphs as well
Tree Reparameterization

• On a tree, the joint distribution factorizes in a special way

\[
p(x_1, ..., x_n) = \frac{1}{Z'} \prod_{i \in V} p_i(x_i) \prod_{c} \frac{p_c(x_c)}{\prod_{i \in c} p_i(x_i)}
\]

• \(p_i \) is the marginal distribution of the \(i^{th} \) variable and \(p_{ij} \) is the max-marginal distribution for the edge \((i, j) \in E\)

• This applies to tree-structured factor graphs as well
Entropy of a Tree

• Given this factorization, we can easily compute the entropy of a tree structured distribution

\[H_{Tree} = - \sum_{i \in V} \sum_{x_i} p_i(x_i) \log p_i(x_i) - \sum_{c} \sum_{x_c} p_c(x_c) \log \frac{p_c(x_c)}{\prod_{i \in c} p_i(x_i)} \]

• This only depends on the marginals

• Use this as an approximation for general distributions!
Bethe Free Energy

• Combining these two approximations gives us the so-called Bethe free energy approximation

\[
\max_{\tau \in \mathbb{T}} H_B(\tau) + \sum_C \sum_{x_C} \tau_C(x_C) \log \psi_C(x_C)
\]

where

\[
H_B(\tau) = - \sum_{i \in V} \sum_{x_i} \tau_i(x_i) \log \tau_i(x_i) - \sum_C \sum_{x_C} \tau_C(x_C) \log \frac{\tau_C(x_C)}{\prod_{i \in C} \tau_i(x_i)}
\]
Bethe Free Energy

\[
\max_{\tau \in \mathcal{T}} H_B(\tau) + \sum_{C} \sum_{x_C} \tau_C(x_C) \log \psi_c(x_C)
\]

• This is not a concave optimization problem for general graphs
 • It is still difficult to maximize
 • Fixed points of loopy belief propagation correspond to saddle points of this objective over the local marginal polytope