Lecture 16: Hidden Markov Models
Unobserved Variables

• **Latent or hidden variables** in the model are never observed
 • We may or may not be interested in their values, but their existence is crucial to the model

• Some observations in a particular sample may be **missing**
 • Missing information on surveys or medical records (quite common)
 • We may need to model how the variables are missing
Learning with Latent Variables

• Log-likelihood with latent variables:

$$\log l(\theta) = \sum_{i=1}^{N} \log p(x^{(i)} | \theta)$$

$$= \sum_{i=1}^{N} \log \sum_{y} p(x^{(i)}, y | \theta)$$

• Again, this is typically not a concave function of θ

• We will apply the same trick that we did with GMMs last lecture
Expectation Maximization

\[
\log l(\theta) = \sum_{i=1}^{N} \log p(x^{(i)}|\theta)
\]

\[
= \sum_{i=1}^{N} \log \sum_y p(x^{(i)}, y|\theta)
\]

\[
= \sum_{i=1}^{N} \log \sum_y q_i(y) \cdot \frac{p(x^{(i)}, y|\theta)}{q_i(y)}
\]

\[
\geq \sum_{i=1}^{N} \sum_y q_i(y) \log \frac{p(x^{(i)}, y|\theta)}{q_i(y)}
\]
Expectation Maximization

\[F(q, \theta) \equiv \sum_{i=1}^{N} \sum_{y} q_i(y) \log \frac{p(x^{(i)}, y|\theta)}{q_i(y)} \]

- Maximizing \(F \) is equivalent to the maximizing the log-likelihood
- Maximize it using coordinate ascent

\[q^{t+1} = \arg \max_{q_1, \ldots, q_K} F(q, \theta^t) \]
\[\theta^{t+1} = \arg\max_{\theta} F(q^{t+1}, \theta) \]
Expectation Maximization

\[
\sum_{i=1}^{N} \sum_{y} q_i(y) \log \frac{p(x^{(i)}, y | \theta^t)}{q_i(y)}
\]

- Maximized when \(q_i(y) = p(y | x^{(i)}, \theta^t) \)
- Can reformulate the EM algorithm as

\[
\theta^{t+1} = \arg\max_\theta \sum_{i=1}^{N} \sum_{y} p(y | x^{(i)}, \theta^t) \log p(x^{(i)}, y | \theta)
\]
Hidden Markov Models

\[p(x_1, \ldots, x_T, y_1, \ldots, y_T) = p(y_1)p(x_1 | y_1) \prod_{t} p(y_t | y_{t-1})p(x_t | y_t) \]

- \(X \)'s are observed variables, \(Y \)'s are latent/hidden
- Time homogenous: \(p(y_t = j | y_{t-1} = i) = p(y_{t'} = j | y_{t'-1} = i) \)
- For learning, we are given sequences of observations
A Markov chain is a sequence of random variables $X_1, \ldots, X_T \in S$ such that
\begin{equation}
p(x_{t+1} | x_1, \ldots, x_T) = p(x_{t+1} | x_t)
\end{equation}

The set S is called the state space, and $p(X_{t+1} = j | X_t = i)$ is the probability of transitioning from state i to state j at step t.
Markov Chains

• When the probability of transitioning between two states does not depend on time, we call it a time homogeneous Markov chain

 • Represent it by a $|S| \times |S|$ transition matrix A

 • $A_{ij} = p(X_{t+1} = j | X_t = i)$

 • A is a stochastic matrix (all rows sum to one)
Learning HMMs

• A bit of notation:

 • $\pi_i = p(Y_1 = i)$

 • $A_{ij} = p(Y_t = j|Y_{t-1} = i)$

 • $b_j(x_t) = p(X_t = x_t|Y_t = j)$

• These parameters describe an HMM, $\theta = \{\pi, A, b\}$

• We’ll derive the updates in the case that the observations X_t are discrete random variables
Learning HMMs

\[
\sum_y p(y|x, \theta^s) \log p(x, y|\theta) = \\
= \sum_y p(y|x, \theta^s) \log \left(p(y_1)p(x_1|y_1) \prod_{t=2}^T p(y_t|y_{t-1})p(x_t|y_t) \right) \\
= \sum_y p(y|x, \theta^s) \log \left(\pi_{y_1}b_{y_1}(x_1) \prod_{t=2}^T A_{y_t,y_{t-1}} b_{y_t}(x_t) \right) \\
= \sum_y p(y|x, \theta^s) \log \pi_{y_1} + \sum_y p(y|x, \theta^s) \left(\sum_{t=1}^T \log b_{y_t}(x_t) \right) + \sum_y p(y|x, \theta^s) \left(\sum_{t=2}^T \log A_{y_t,y_{t-1}} \right) \\
= \sum_i p(Y_1 = i|x, \theta^s) \log \pi_i + \sum_{i=1}^T \sum_{i} p(Y_t = i|x, \theta^s) \log b_i(x_t) + \sum_{i=2}^T \sum_{i} \sum_{j} p(Y_t = i,Y_{t-1} = j|x, \theta^s) \log A_{i,j}
\]
Learning HMMs

\[
p(x, y|\theta^s) = \pi_{y_1}^{s-1} b_{y_1}^{s-1}(x_1) \prod_{t=2}^{T} A_{y_t, y_{t-1}}^{s-1} b_{y_t}^{s-1}(x_t)
\]

\[
\pi_i^s = \frac{p(Y_1 = i|x, \theta^s)}{1}
\]

\[
b_i^s(k) = \frac{\sum_{t=1}^{T} p(Y_t = i|x, \theta^s) \delta(x_t = k)}{\sum_{t=1}^{T} p(Y_t = i|x, \theta^s)}
\]

\[
A_{ij}^s = \frac{\sum_{t=2}^{T} p(x, Y_t = i, Y_{t-1} = j|\theta^s)}{\sum_{t=2}^{T} p(Y_{t-1} = j|x, \theta^s)}
\]
Prediction in HMMs

• Once we learn the model, given a new sequence of observations, x_1, \ldots, x_T, we want to predict y_T
 • In the tree application, this corresponds to finding the temperature at a specific time given the rings of a tree
 • In the missile tracking example, this corresponds to finding the position of the missile at a particular time

• Want to compute $p(y_T|x, \theta)$
Prediction in HMMs

- Want to compute $p(y_T | x, \theta) = p(x, y_T | \theta) / p(x | \theta)$

- Direct approach:

 $$p(x, Y_T = i | \theta) = \sum_{y_1, \ldots, y_{T-1}} p(x, y_1, \ldots, y_{T-1}, Y_T = i | \theta)$$

- Dynamic programming approach:

 $$p(x, Y_T = i | \theta) = \sum_j p(x, Y_T = i, Y_{T-1} = j)$$

 $$= \sum_j p(x_1, \ldots, x_{T-1}, Y_{T-1} = j)p(x_T, Y_T = i | x_1, \ldots, x_{T-1}, Y_{T-1} = j)$$

 $$= \sum_j p(x_1, \ldots, x_{T-1}, Y_{T-1} = j)p(x_T | Y_T = i)p(Y_T = i | Y_{T-1} = j)$$
Prediction in HMMs

- Want to compute $p(y_T|x, \theta) = p(x, y_T|\theta)/p(x)$

 - Direct approach:

 $$p(x, Y_T = i|\theta) = \sum_{y_1, \ldots, y_{T-1}} p(x, y_1, \ldots, y_{T-1}, Y_T = i|\theta)$$

 - Dynamic programming approach:

 Called filtering: easy to implement using dynamic programming

 $$p(x, Y_T = i|\theta) = \sum_j p(x, Y_T = i, Y_{T-1} = j)$$

 $$= \sum_j p(x_1, \ldots, x_{T-1}, Y_{T-1} = j)p(x_T, Y_T = i|x_1, \ldots, x_{T-1}, Y_{T-1} = j)$$

 $$= \sum_j p(x_1, \ldots, x_{T-1}, Y_{T-1} = j)p(x_T|Y_T = i)p(Y_T = i|Y_{T-1} = j)$$
Latent Variables & EM

- Previous updates derived for a single observation (to simplify)
 - Can get the general updates for multiple sequences by adding sums in the appropriate places
 - Suffers from the existence of lots of local optima