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Reparameterization

• The messages passed in max-product and sum-product can be 
used to construct a reparameterization of the joint distribution

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

and

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 �
𝑘𝑘∈𝑁𝑁(𝑖𝑖)

𝑚𝑚𝑘𝑘→𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 𝑚𝑚𝑗𝑗→𝑖𝑖 𝑥𝑥𝑖𝑖

2



Reparameterization

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 �
𝑘𝑘∈𝑁𝑁(𝑖𝑖)

𝑚𝑚𝑘𝑘→𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 𝑚𝑚𝑗𝑗→𝑖𝑖 𝑥𝑥𝑖𝑖

• Reparameterizations do not change the partition function, the 
MAP solution, or the factorization of the joint distribution

• They push "weight" around between the different factors

• Other reparameterizations are possible/useful
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Sum-Product Tree Reparameterization

• On a tree, the joint distribution has a special form

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍′
�
𝑖𝑖∈𝑉𝑉

𝑝𝑝(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝑝𝑝(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)
𝑝𝑝 𝑥𝑥𝑖𝑖 𝑝𝑝(𝑥𝑥𝑗𝑗)

• That is, 𝑝𝑝 can be written as a product of marginal distributions 

• Exactly like Bayesian networks (identical after some 
manipulation)

4



Max-Product Tree Reparameterization

• On a tree, the joint distribution also has a special form in terms 
of max-marginals

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍′
�
𝑖𝑖∈𝑉𝑉

𝜇𝜇𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)
𝜇𝜇𝑖𝑖 𝑥𝑥𝑖𝑖 𝜇𝜇𝑗𝑗(𝑥𝑥𝑗𝑗)

• 𝜇𝜇𝑖𝑖 is the max-marginal distribution of the 𝑖𝑖𝑡𝑡𝑡 variable and 𝜇𝜇𝑖𝑖𝑖𝑖 is 
the max-marginal distribution for the edge 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸

• How to express 𝜇𝜇𝑖𝑖𝑖𝑖 as a function of the messages and the 
potential functions?
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MAP in General MRFs

• While max-product solves the MAP problem on trees, the MAP 
problem in MRFs is, in general, intractable (could use it to find a 
maximal independent set!)

• Don’t expect to be able to solve the problem exactly

• Will settle for “good” approximations

• Can use max-product messages as a starting point
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Upper Bounds

max
𝑥𝑥1,…,𝑥𝑥𝑛𝑛

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ≤
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

max
𝑥𝑥𝑖𝑖

𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

max
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

• This provides an upper bound on the optimization problem

• Do other reparameterizations provide better bounds?
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Duality

𝐿𝐿 𝑚𝑚 =
1
𝑍𝑍
�
𝑖𝑖∈𝑉𝑉

max
𝑥𝑥𝑖𝑖

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 �
𝑘𝑘∈𝑁𝑁(𝑖𝑖)

𝑚𝑚𝑘𝑘→𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

max
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 𝑚𝑚𝑗𝑗→𝑖𝑖 𝑥𝑥𝑖𝑖

• We construct a dual optimization problem

min
𝑚𝑚≥0

𝐿𝐿(𝑚𝑚) ≥ max
𝑥𝑥

𝑝𝑝(𝑥𝑥)

• Equivalently, we can minimize the convex function 𝑈𝑈

8

𝑈𝑈 log𝑚𝑚 = − log𝑍𝑍 + �
𝑖𝑖∈𝑉𝑉

max
𝑥𝑥𝑖𝑖

log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑘𝑘∈𝑁𝑁 𝑖𝑖

log𝑚𝑚𝑘𝑘→𝑖𝑖 𝑥𝑥𝑖𝑖

+ �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

max
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

log𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 − log𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 − log𝑚𝑚𝑗𝑗→𝑖𝑖 𝑥𝑥𝑖𝑖



Convex and Concave Functions

9

ConvexConcave Neither



Optimizing the Dual

• Minimizing 𝑈𝑈(log𝑚𝑚)

• Block coordinate descent:  improve the bound by changing 
only a small subset of the messages at a time (usually look 
like message-passing algorithms)

• Subgradient descent:  variant of gradient descent for non-
differentiable functions

• Many more optimization methods…

• Note that min
𝑚𝑚≥0

𝐿𝐿(𝑚𝑚) is not necessarily equal to max
𝑥𝑥

𝑝𝑝(𝑥𝑥), so this 
procedure only yields an approximation to the maximal value
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Gradient Descent

• Iterative method to minimize a differentiable convex function 𝑓𝑓
(for non-differentiable use subgradients)

• Intuition: step along a direction in which the function is 
decreasing

• Pick an initial point 𝑥𝑥0

• Iterate until convergence

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝛾𝛾𝑡𝑡𝛻𝛻𝑓𝑓(𝑥𝑥𝑡𝑡)

where 𝛾𝛾𝑡𝑡 = 2
2+𝑡𝑡

is the 𝑡𝑡𝑡𝑡𝑡 step size
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Gradient Descent

source: Wikipedia12



Subgradients

• For a convex function 𝑔𝑔(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is any 
tangent line/plane through the point 𝑥𝑥0 that underestimates the 
function everywhere

𝑥𝑥

𝑔𝑔(𝑥𝑥)

𝑥𝑥0
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Subgradients

• For a convex function 𝑔𝑔(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is any 
tangent line/plane through the point 𝑥𝑥0 that underestimates the 
function everywhere

𝑥𝑥

𝑔𝑔(𝑥𝑥)

𝑥𝑥0
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Subgradients

• For a convex function 𝑔𝑔(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is any 
tangent line/plane through the point 𝑥𝑥0 that underestimates the 
function everywhere

𝑥𝑥

𝑔𝑔(𝑥𝑥)

𝑥𝑥0
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Subgradients

• For a convex function 𝑔𝑔(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is any 
tangent line/plane through the point 𝑥𝑥0 that underestimates the 
function everywhere

𝑥𝑥

𝑔𝑔(𝑥𝑥)

𝑥𝑥0

If 0 is a subgradient at 
𝑥𝑥0, then 𝑥𝑥0 is a global 

minimum
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Integer Programming

• We can also express the MAP problem as a 0,1 integer 
programming problem

• Convert a maximum of a product into a maximum of a sum 
by taking logs

• Introduce indicator variables, 𝜏𝜏, to represent the chosen 
assignment
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Integer Programming

• Introduce indicator variables for a specific assignment

• 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ {0,1} for each 𝑖𝑖 ∈ 𝑉𝑉 and 𝑥𝑥𝑖𝑖

• 𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ {0,1} for each 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸 and 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

• The MAP objective function is then equivalent to

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

where the 𝜏𝜏's are required to satisfy certain marginalization 
conditions
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Integer Programming

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

such that

19

For all 𝑖𝑖 ∈ 𝑉𝑉

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖 ∈ 𝑉𝑉, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖, 𝑗𝑗 ∈
𝐸𝐸, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1

�
𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖)

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ {0,1}

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ {0,1}



Integer Programming

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

such that
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These 
constraints 
define the 
vertices of 
the marginal 
polytope
(set of all 
valid 
marginal 
distributions)

For all 𝑖𝑖 ∈ 𝑉𝑉

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖 ∈ 𝑉𝑉, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖, 𝑗𝑗 ∈
𝐸𝐸, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1

�
𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖)

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ {0,1}

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ {0,1}



Marginal Polytope

• Given an assignment to all of the random variables, 𝑥𝑥∗, can 
construct 𝜏𝜏 in the marginal polytope so that the value of the 
objective function is log 𝑝𝑝(𝑥𝑥∗)

• Set 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖∗ = 1, and zero otherwise

• Set 𝜏𝜏𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖∗, 𝑥𝑥𝑗𝑗∗ = 1, and zero otherwise

• Given a 𝜏𝜏 in the marginal polytope, can construct an 𝑥𝑥∗ such 
that the value of the objective function at 𝜏𝜏 is equal to log𝑝𝑝(𝑥𝑥∗)

• Set 𝑥𝑥𝑖𝑖∗ = argmax
xi

𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖)
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An Example:  Independent Sets

• What is the integer programming problem corresponding to the 
uniform distribution over independent sets of a graph 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸)?

𝑝𝑝 𝑥𝑥𝑉𝑉 =
1
𝑍𝑍
�
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

1𝑥𝑥𝑖𝑖+𝑥𝑥𝑗𝑗≤1

(worked out on the board)
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Linear Relaxation
• The integer program can be relaxed into a linear program by 

replacing the 0,1 integrality constraints with linear constraints

• This relaxed set of constraints forms the local marginal 
polytope

• The 𝜏𝜏’s no longer correspond to an achievable marginal 
distribution, so we call them pseudo-marginals

• We call it a relaxation because the constraints have been 
relaxed:  all solutions to the IP are contained as solutions of 
the LP

• Linear programming problems can be solved in polynomial time!
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Linear Relaxation

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

such that

24

For all 𝑖𝑖 ∈ 𝑉𝑉

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖 ∈ 𝑉𝑉, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖, 𝑗𝑗 ∈
𝐸𝐸, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1

�
𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖)

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ [0,1]

𝜏𝜏𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ [0,1]



An Example:  Independent Sets

• What is the linear programming problem corresponding to the 
uniform distribution over independent sets of a graph 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸)?

𝑝𝑝 𝑥𝑥𝑉𝑉 =
1
𝑍𝑍
�
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

1𝑥𝑥𝑖𝑖+𝑥𝑥𝑗𝑗≤1

• The MAP LP is a relaxation of the integer programming problem 

• MAP LP could have a better solution… (example in class)
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Tightness of the MAP LP

• When is it that solving the MAP LP (or equivalently, the dual 
optimization) is the same as solving the integer programming 
problem?

• We say that there is no gap when this is the case

• The answer can be expressed as a structural property of the 
graph (beyond the scope of this course)
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