Binary Classification / Perceptron

Nicholas Ruozzi
University of Texas at Dallas

Slides adapted from David Sontag and Vibhav Gogate
Supervised Learning

• **Input:** \((x_1, y_1), \ldots, (x_n, y_n)\)
 - \(x_i\) is the \(i^{th}\) data item and \(y_i\) is the \(i^{th}\) label

• **Goal:** find a function \(f\) such that \(f(x_i)\) is a “good approximation” to \(y_i\)
 - Can use it to predict \(y\) values for previously unseen \(x\) values
Examples of Supervised Learning

- Spam email detection
- Handwritten digit recognition
- Stock market prediction
- More?
Supervised Learning

- **Hypothesis space**: set of allowable functions $f : X \rightarrow Y$

- **Goal**: find the “best” element of the hypothesis space

 - How do we measure the quality of f?
Regression

Hypothesis class: linear functions $f(x) = ax + b$

Squared loss function used to measure the error of the approximation
Linear Regression

• In typical regression applications, measure the fit using a squared loss function

\[L(f, y_i) = (f(x_i) - y_i)^2 \]

• Want to minimize the average loss on the training data

• For linear regression, the learning problem is then

\[\min_{a,b} \frac{1}{n} \sum_i (ax_i + b - y_i)^2 \]

• For an unseen data point, \(x \), the learning algorithm predicts \(f(x) \)
Binary Classification

• Input $(x^{(1)}, y_1), \ldots, (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, +1\}$

• We can think of the observations as points in \mathbb{R}^m with an associated sign (either +/- corresponding to 0/1)

• An example with $m = 2$
Binary Classification

- **Input** \((x^{(1)}, y_1), \ldots, (x^{(n)}, y_n) \) with \(x_i \in \mathbb{R}^m \) and \(y_i \in \{-1, +1\} \)

- We can think of the observations as points in \(\mathbb{R}^m \) with an associated sign (either +/- corresponding to 0/1)

- An example with \(m = 2 \)

What is a good hypothesis space for this problem?
Binary Classification

- Input \((x^{(1)}, y_1), \ldots, (x^{(n)}, y_n)\) with \(x_i \in \mathbb{R}^m\) and \(y_i \in \{-1, +1\}\)

- We can think of the observations as points in \(\mathbb{R}^m\) with an associated sign (either +/- corresponding to 0/1)

- An example with \(m = 2\)

What is a good hypothesis space for this problem?
Binary Classification

• Input \((x^{(1)}, y_1), \ldots, (x^{(n)}, y_n)\) with \(x_i \in \mathbb{R}^m\) and \(y_i \in \{-1, +1\}\)

• We can think of the observations as points in \(\mathbb{R}^m\) with an associated sign (either +/− corresponding to 0/1)

• An example with \(m = 2\)

What is a good hypothesis space for this problem?

In this case, we say that the observations are linearly separable.
Linear Separators

• In n dimensions, a hyperplane is a solution to the equation

 $$w^T x + b = 0$$

 with $w \in \mathbb{R}^n$, $b \in \mathbb{R}$

• Hyperplanes divide \mathbb{R}^n into two distinct sets of points (called halfspaces)

 $$w^T x + b > 0$$

 $$w^T x + b < 0$$
Binary Classification

- Input \((x^{(1)}, y_1), \ldots, (x^{(n)}, y_n) \) with \(x_i \in \mathbb{R}^m \) and \(y_i \in \{-1, +1\} \)
- We can think of the observations as points in \(\mathbb{R}^m \) with an associated sign (either +/- corresponding to 0/1)
- An example with \(m = 2 \)

What is a good hypothesis space for this problem?

In this case, we say that the observations are \textit{linearly separable}
The Linearly Separable Case

• Input \((x^{(1)}, y_1), \ldots, (x^{(n)}, y_n)\) with \(x_i \in \mathbb{R}^m\) and \(y_i \in \{-1, 1\}\)

• Hypothesis space: separating hyperplanes

\[f(x) = w^T x + b \]

• How should we choose the loss function?
The Linearly Separable Case

• Input \((x^{(1)}, y_1), \ldots, (x^{(n)}, y_n)\) with \(x_i \in \mathbb{R}^m\) and \(y_i \in \{-1, 1\}\)

• Hypothesis space: separating hyperplanes

\[f_{w,b}(x) = w^T x + b \]

• How should we choose the loss function?

 – Count the number of misclassifications

\[loss = \sum_i |y_i - \text{sign}(f_{w,b}(x^{(i)}))| \]

• Tough to optimize, gradient contains no information
The Linearly Separable Case

- Input \((x^{(1)}, y_1), \ldots, (x^{(n)}, y_n)\) with \(x_i \in \mathbb{R}^m\) and \(y_i \in \{-1, 1\}\)

- Hypothesis space: separating hyperplanes
 \[f_{w,b}(x) = w^T x + b \]

- How should we choose the loss function?
 - Penalize each misclassification by the size of the violation
 \[\text{perceptron loss} = \sum_i \max\{0, -y_i f_{w,b}(x^{(i)})\} \]
 - Modified hinge loss (this loss is convex, but not differentiable)
The Perceptron Algorithm

• Try to minimize the perceptron loss using (sub)gradient descent

\[\nabla_w(\text{perceptron loss}) = \sum_{i: -y_i f_{w,b}(x^{(i)}) \geq 0} -y_i x^{(i)} \]

\[\nabla_b(\text{perceptron loss}) = \sum_{i: -y_i f_{w,b}(x^{(i)}) \geq 0} -y_i \]
Subgradients

- For a convex function $g(x)$, a subgradient at a point x^0 is any tangent line/plane through the point x^0 that underestimates the function everywhere.

![Graph illustrating subgradients](image_url)
Subgradients

For a convex function $g(x)$, a subgradient at a point x^0 is any tangent line/plane through the point x^0 that underestimates the function everywhere.
Subgradients

- For a convex function $g(x)$, a subgradient at a point x^0 is any tangent line/plane through the point x^0 that underestimates the function everywhere.
Subgradients

• For a convex function $g(x)$, a subgradient at a point x^0 is any tangent line/plane through the point x^0 that underestimates the function everywhere.

If $\vec{0}$ is subgradient at x^0, then x^0 is a global minimum.
The Perceptron Algorithm

• Try to minimize the perceptron loss using (sub)gradient descent

\[w(t+1) = w(t) + \gamma_t \cdot \sum_{i: -y_i f_w(t),b(t)(x(i)) \geq 0} y_i x^{(i)} \]

\[b(t+1) = b(t) + \gamma_t \cdot \sum_{i: -y_i f_w(t),b(t)(x(i)) \geq 0} y_i \]

• With step size \(\gamma_t \) (sometimes called the learning rate)
Stochastic Gradient Descent

• To make the training more practical, stochastic gradient descent is used instead of standard gradient descent

• Approximate the gradient of a sum by sampling a few indices (as few as one) uniformly at random and averaging

\[\nabla_x \left[\sum_{i=1}^{n} g_i(x) \right] \approx \frac{1}{K} \sum_{k=1}^{K} \nabla_x g_{i_k}(x) \]

here, each \(i^k \) is sampled uniformly at random from \(\{1, \ldots, n\} \)

• Stochastic gradient descent converges under certain assumptions on the step size
Stochastic Gradient Descent

• Setting $K = 1$, we can simply pick a random observation i and perform the following update if the i^{th} data point is misclassified

$$w^{(t+1)} = w^{(t)} + \gamma_t y_i x^{(i)}$$

$$b^{(t+1)} = b^{(t)} + \gamma_t y_i$$

and

$$w^{(t+1)} = w^{(t)}$$

$$b^{(t+1)} = b^{(t)}$$

otherwise

• Sometimes, you will see the perceptron algorithm specified with $\gamma_t = 1$ for all t
Application of Perceptron

- Spam email classification
 - Represent emails as vectors of counts of certain words (e.g., sir, madam, Nigerian, prince, money, etc.)
 - Apply the perceptron algorithm to the resulting vectors
 - To predict the label of an unseen email:
 - Construct its vector representation, x'
 - Check whether or not $w^T x' + b$ is positive or negative
Perceptron Learning

• **Drawbacks:**

 – No convergence guarantees if the observations are not linearly separable

 – Can overfit

 • There are a number of perfect classifiers, but the perceptron algorithm doesn’t have any mechanism for choosing between them
What If the Data Isn’t Separable?

- Input \((x^{(1)}, y_1), \ldots, (x^{(n)}, y_n) \) with \(x_i \in \mathbb{R}^m \) and \(y_i \in \{-1, +1\} \)

- We can think of the observations as points in \(\mathbb{R}^m \) with an associated sign (either +/- corresponding to 0/1)

- An example with \(m = 2 \)

What is a good hypothesis space for this problem?
What If the Data Isn‘t Separable?

• Input \((x^{(1)}, y_1), \ldots, (x^{(n)}, y_n)\) with \(x_i \in \mathbb{R}^m\) and \(y_i \in \{-1, +1\}\)

• We can think of the observations as points in \(\mathbb{R}^m\) with an associated sign (either +/− corresponding to 0/1)

• An example with \(m = 2\)

What is a good hypothesis space for this problem?
Adding Features

- Perceptron algorithm only works for linearly separable data

Can add features to make the data linearly separable over a larger space!
Adding Features

• The idea:
 – Given the observations $x^{(1)}, \ldots, x^{(n)}$, construct a feature vector $\phi(x)$
 – Use $\phi(x^{(1)}), \ldots, \phi(x^{(n)})$ instead of $x^{(1)}, \ldots, x^{(n)}$ in the learning algorithm
 – Goal is to choose ϕ so that $\phi(x^{(1)}), \ldots, \phi(x^{(n)})$ are linearly separable
 – Learn linear separators of the form $w^T \phi(x)$ (instead of $w^T x$)

• Warning: more expressive features can lead to overfitting
Adding Features

- **Examples**

 - $\phi(x_1, x_2) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

 - This is just the input data, without modification

 - $\phi(x_1, x_2) = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix}$

 - This corresponds to a second degree polynomial separator, or equivalently, elliptical separators in the original space
Adding Features

\[(x_1 - 1)^2 + (x_2 - 1)^2 - 1 \leq 0\]
Support Vector Machines

• How can we decide between two perfect classifiers?

• What is the practical difference between these two solutions?