Variance Reduction and Ensemble Methods

Nicholas Ruozzi
University of Texas at Dallas

Based on the slides of Vibhav Gogate and David Sontag
Last Time

- PAC learning
- Bias/variance tradeoff
 - small hypothesis spaces (not enough flexibility) can have high bias
 - rich hypothesis spaces (too much flexibility) can have high variance
- Today: more on this phenomenon and how to get around it
Intuition

• Bias
 • Measures the accuracy or quality of the algorithm
 • High bias means a poor match
• Variance
 • Measures the precision or specificity of the match
 • High variance means a weak match
• We would like to minimize each of these
• Unfortunately, we can’t do this independently, there is a trade-off
• True function is \(y = f(x) + \epsilon \)

 • Where noise, \(\epsilon \), is normally distributed with zero mean and standard deviation \(\sigma \)

• Given a set of training examples, \((x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)}) \), we fit a hypothesis \(g(x) = w^T x + b \) to the data to minimize the squared error

\[
\sum_{i} [y^{(i)} - g(x^{(i)})]^2
\]
2-D Example

Sample 20 points from $f(x) = x + 2 \sin(1.5x) + N(0,0.2)$
50 fits (20 examples each)
• Given a new data point x' with observed value $y' = f(x') + \epsilon$, want to understand the expected prediction error

• Suppose that training samples are drawn independently from a distribution $p(S)$, want to compute the expected error of the estimator

$$E[(y' - gs(x'))^2]$$
• Variance of a random variable, Z

$$Var(Z) = E[(Z - E[Z])^2]$$

$$= E[Z^2 - 2ZE[Z] + E[Z]^2]$$

$$= E[Z^2] - E[Z]^2$$

• Properties of $Var(Z)$

$$Var(aZ) = E[a^2Z^2] - E[aZ]^2 = a^2Var(Z)$$
Bias-Variance-Noise Decomposition

\[
E \left[(y' - g_S(x'))^2 \right] = E[g_S(x')^2 - 2g_S(x')y' + y'^2] \\
= E[g_S(x')^2] - 2E[g_S(x')]E[y'] + E[y'^2] \\
= \text{Var}(g_S(x')) + E[g_S(x')]^2 - 2E[g_S(x')]f(x') \\
+ \text{Var}(y') + f(x')^2 \\
= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \text{Var}(\epsilon) \\
= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2
\]
Bias-Variance-Noise Decomposition

\[E \left[(y' - g_S(x'))^2 \right] = E[g_S(x')^2 - 2g_S(x')y' + y'^2] \]

\[= E[g_S(x')^2] - 2E[g_S(x')E[y']] + E[y'^2] \]

\[= \text{Var}(g_S(x')) + E[g_S(x')^2] - 2E[g_S(x')f(x')] \]
\[+ \text{Var}(y') + f(x')^2 \]

\[= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \text{Var}(\epsilon) \]

\[= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2 \]

The samples \(S \) and the noise \(\epsilon \) are independent.
Bias-Variance-Noise Decomposition

\[
E \left[(y' - g_S(x'))^2 \right] = E \left[g_S(x')^2 - 2g_S(x')y' + y'^2 \right]
\]

\[
= E \left[g_S(x')^2 \right] - 2E \left[g_S(x') \right] E[y'] + E[y'^2]
\]

\[
= \text{Var}(g_S(x')) + E[g_S(x')]^2 - 2E[g_S(x')]f(x')
\]

\[
+ \text{Var}(y') + f(x')^2
\]

\[
= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \text{Var}(\epsilon)
\]

\[
= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2
\]

Follows from definition of variance
Bias-Variance-Noise Decomposition

\[E \left[(y' - g_S(x'))^2 \right] = E[g_S(x')^2 - 2g_S(x')y' + y'^2] \]

\[= E[g_S(x')^2] - 2E[g_S(x')]E[y'] + E[y'^2] \]

\[= Var(g_S(x')) + E[g_S(x')]^2 - 2E[g_S(x')]f(x') \]

\[+ Var(y') + f(x')^2 \]

\[= Var(g_S(x')) + (E[g_S(x')] - f(x'))^2 + Var(\epsilon) \]

\[= Var(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2 \]

\[E[y'] = f(x') \]
Bias-Variance-Noise Decomposition

\[E \left[(y' - g_S(x'))^2 \right] = E[g_S(x')^2 - 2g_S(x')y' + y'^2] \]

\[= E[g_S(x')^2] - 2E[g_S(x')]E[y'] + E[y'^2] \]

\[= Var(g_S(x')) + E[g_S(x')]^2 - 2E[g_S(x')]f(x') \]
\[+ Var(y') + f(x')^2 \]

\[= Var(g_S(x')) + (E[g_S(x')] - f(x'))^2 + Var(\epsilon) \]

\[= Var(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2 \]

Variance Bias Noise
Bias, Variance, and Noise

• Variance: $E \left[(g_S(x') - E[g_S(x')])^2 \right]$

 • Describes how much $g_S(x')$ varies from one training set S to another

• Bias: $E[g_S(x')] - f(x')$

 • Describes the average error of $g_S(x')$

• Noise: $E \left[(y' - f(x'))^2 \right] = E[\epsilon^2] = \sigma^2$

 • Describes how much y' varies from $f(x')$
2-D Example

50 fits (20 examples each)
Bias
Variance
Noise
Bias

• Low bias
 • ?

• High bias
 • ?
Bias

• Low bias
 • Linear regression applied to linear data
 • 2nd degree polynomial applied to quadratic data

• High bias
 • Constant function
 • Linear regression applied to highly non-linear data
Variance

- Low variance
 - ?

- High variance
 - ?
Variance

- Low variance
 - Constant function
 - Model independent of training data
- High variance
 - High degree polynomial
• \((\text{bias}^2 + \text{variance})\) is what counts for prediction

• As we saw in PAC learning, we often have
 • Low bias \(\Rightarrow\) high variance
 • Low variance \(\Rightarrow\) high bias
 • Is this a firm rule?
Reduce Variance Without Increasing Bias

- **Averaging** reduces variance: let $Z_1, ..., Z_N$ be i.i.d random variables

$$Var\left(\frac{1}{N} \sum_{i} Z_i\right) = \frac{1}{N} Var(Z_i)$$

- Idea: average models to reduce model variance

- The problem
 - Only one training set
 - Where do multiple models come from?
Bagging: Bootstrap Aggregation

• Take repeated bootstrap samples from training set D (Breiman, 1994)

• **Bootstrap sampling**: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D

• **Bagging**:

 • Create k bootstrap samples D_1, \ldots, D_k

 • Train distinct classifier on each D_i

 • Classify new instance by majority vote / average
Bagging: Bootstrap Aggregation

Step 1: Create Multiple Data Sets

Step 2: Build Multiple Classifiers

Step 3: Combine Classifiers

Original Training data

D, D_1, D_2, ..., D_{t-1}, D_t

C_1, C_2, C_{t-1}, C_t

C^*

[Image from the slides of David Sontag]
Bagging

<table>
<thead>
<tr>
<th>Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>BS 2</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>BS 3</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

- Build a classifier from each bootstrap sample
- In each bootstrap sample, each data point has probability \((1 - \frac{1}{N})^N\) of not being selected
 - Expected number of distinct data points in each sample is then
 \[N \cdot \left(1 - \left(1 - \frac{1}{N}\right)^N\right) \approx N \cdot (1 - \exp(-1)) = 0.632 \cdot N \]
Bagging

<table>
<thead>
<tr>
<th>Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>BS 2</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>BS 3</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

- Build a classifier from each bootstrap sample
- In each bootstrap sample, each data point has probability
 \[
 \left(1 - \frac{1}{N}\right)^N
 \]
 of not being selected
- If we have 1 TB of data, each bootstrap sample will be ~ 632GB
 (this can present computational challenges)
Decision Tree Bagging

[image from the slides of David Sontag]
Decision Tree Bagging (100 Bagged Trees)

[Image from the slides of David Sontag]
i) The data set is randomly divided into a test set \mathcal{T} and a learning set \mathcal{L}. In the real data sets \mathcal{T} is 10% of the data. In the simulated waveform data, 1800 samples are generated. \mathcal{L} consists of 300 of these, and \mathcal{T} the remainder.

ii) A classification tree is constructed from \mathcal{L} using 10-fold cross-validation. Running the test set \mathcal{T} down this tree gives the misclassification rate $e_S(\mathcal{L}, \mathcal{T})$.

iii) A bootstrap sample \mathcal{L}_B is selected from \mathcal{L}, and a tree grown using \mathcal{L}_B. The original learning set \mathcal{L} is used as test set to select the best pruned subtree (see Section 4.3). This is repeated 50 times giving tree classifiers $\phi_1(x), \ldots, \phi_{50}(x)$.

iv) If $(j_n, x_n) \in \mathcal{T}$, then the estimated class of x_n is that class having the plurality in $\phi_1(x_n), \ldots, \phi_{50}(x_n)$. If there is a tie, the estimated class is the one with the lowest class label. The proportion of times the estimated class differs from the true class is the bagging misclassification rate $e_B(\mathcal{L}, \mathcal{T})$.

v) The random division of the data into \mathcal{L} and \mathcal{T} is repeated 100 times and the reported \bar{e}_S, \bar{e}_B are the averages over the 100 iterations. For the waveform data, 1800 new cases are generated at each iteration. Standard errors of \bar{e}_S and \bar{e}_B over the 100 iterations are also computed.
Bagging Results

<table>
<thead>
<tr>
<th>Data Set</th>
<th>\bar{e}_S</th>
<th>\bar{e}_B</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveform</td>
<td>29.1</td>
<td>19.3</td>
<td>34%</td>
</tr>
<tr>
<td>heart</td>
<td>4.9</td>
<td>2.8</td>
<td>43%</td>
</tr>
<tr>
<td>breast cancer</td>
<td>5.9</td>
<td>3.7</td>
<td>37%</td>
</tr>
<tr>
<td>ionosphere</td>
<td>11.2</td>
<td>7.9</td>
<td>29%</td>
</tr>
<tr>
<td>diabetes</td>
<td>25.3</td>
<td>23.9</td>
<td>6%</td>
</tr>
<tr>
<td>glass</td>
<td>30.4</td>
<td>23.6</td>
<td>22%</td>
</tr>
<tr>
<td>soybean</td>
<td>8.6</td>
<td>6.8</td>
<td>21%</td>
</tr>
</tbody>
</table>

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994
Random Forests

Step 1: Create random vectors

Original Training data

Step 2: Use random vector to build multiple decision trees

D

T1

T2

D1

D2

Dt-1

Dt

Step 3: Combine decision trees

T*

T1-1

T1
Random Forests

• Ensemble method specifically designed for decision tree classifiers

• Introduce two sources of randomness: “bagging” and “random input vectors”

 • Bagging method: each tree is grown using a bootstrap sample of training data

 • Random vector method: best split at each node is chosen from a random sample of \(m \) attributes instead of all attributes
Random Forest Algorithm

• For $b = 1$ to B
 • Draw a bootstrap sample of size N from the data
 • Grow a tree T_b using the bootstrap sample as follows
 • Choose m attributes uniformly at random from the data
 • Choose the best attribute among the m to split on
 • Split on the best attribute and recurse (until partitions have fewer than s_{min} number of nodes)

• Prediction for a new data point x
 • Regression: $\frac{1}{B} \sum_b T_b(x)$
 • Classification: choose the majority class label among $T_1(x), ..., T_B(x)$
A demo of random forests implemented in JavaScript
When Will Bagging Improve Accuracy?

- Depends on the stability of the base-level classifiers
- A learner is unstable if a small change to the training set causes a large change in the output hypothesis
 - If small changes in D cause large changes in the output, then there will likely be an improvement in performance with bagging
- Bagging helps unstable procedures, but could hurt the performance of stable procedures
 - Decision trees are unstable
 - k-nearest neighbor is stable