Lagrange Multipliers
& the Kernel Trick

Nicholas Ruozzi
University of Texas at Dallas
The Strategy So Far...

- Choose hypothesis space
- Construct loss function (ideally convex)
- Minimize loss to “learn” correct parameters
A mathematical detour, we’ll come back to SVMs soon!

$$\min_{x \in \mathbb{R}^n} f_0(x)$$

subject to:

$$f_i(x) \leq 0, \quad i = 1, \ldots, m$$
$$h_i(x) = 0, \quad i = 1, \ldots, p$$
General Optimization

$$\min_{x \in \mathbb{R}^n} f_0(x)$$

subject to:

$$f_i(x) \leq 0, \quad i = 1, \ldots, m$$
$$h_i(x) = 0, \quad i = 1, \ldots, p$$

$$f_0$$ is not necessarily convex
General Optimization

\[\min_{x \in \mathbb{R}^n} f_0(x) \]

subject to:

\[f_i(x) \leq 0, \quad i = 1, \ldots, m \]
\[h_i(x) = 0, \quad i = 1, \ldots, p \]

Constraints do not need to be linear
Lagrangian

\[L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \]

- Incorporate constraints into a new objective function
- \(\lambda \geq 0 \) and \(\nu \) are vectors of \textit{Lagrange multipliers}
- The Lagrange multipliers can be thought of as enforcing soft constraints
Duality

• Construct a dual function by minimizing the Lagrangian over the primal variables

\[g(\lambda, \nu) = \inf_x L(x, \lambda, \nu) \]

• \(g(\lambda, \nu) = -\infty \) whenever the Lagrangian is not bounded from below for a fixed \(\lambda \) and \(\nu \)
The Primal Problem

\[\min_{x \in \mathbb{R}^n} f_0(x) \]

subject to:

\[f_i(x) \leq 0, \quad i = 1, \ldots, m \]
\[h_i(x) = 0, \quad i = 1, \ldots, p \]

Equivalently,

\[\inf_x \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu) \]
The Dual Problem

\[
\sup_{\lambda \geq 0, \nu} g(\lambda, \nu)
\]

Equivalently,

\[
\sup_{\lambda \geq 0, \nu} \inf_x L(x, \lambda, \nu)
\]

- The dual problem is always concave, even if the primal problem is not convex
Primal vs. Dual

\[\sup_{\lambda \geq 0, \nu} \inf_x L(x, \lambda, \nu) \leq \inf_x \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu) \]

• Why?
 • \(g(\lambda, \nu) \leq L(x, \lambda, \nu) \) for all \(x \)
 • \(L(x', \lambda, \nu) \leq f_0(x') \) for any feasible \(x', \lambda \geq 0 \)
 • \(x \) is feasible if it satisfies all of the constraints
 • Let \(x^* \) be the optimal solution to the primal problem and \(\lambda \geq 0 \)
 \[g(\lambda, \nu) \leq L(x^*, \lambda, \nu) \leq f_0(x^*) \]
Simple Examples

• Minimize $x^2 + y^2$ subject to $x + y \geq 1$

• Minimize $x \log x + y \log y + z \log z$ subject to $x + y + z = 1$
 and $x, y, z \geq 0$
Duality

• Under certain conditions, the two optimization problems are equivalent

\[\sup_{\lambda \geq 0, \nu} \inf_x L(x, \lambda, \nu) = \inf_x \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu) \]

• This is called strong duality

• If the inequality is strict, then we say that there is a duality gap

• Size of gap measured by the difference between the two sides of the inequality
For any optimization problem of the form

$$\min_{x \in \mathbb{R}^n} f_0(x)$$

subject to:

$$f_i(x) \leq 0, \quad i = 1, \ldots, m$$
$$Ax = b$$

where $$f_0, \ldots, f_m$$ are convex functions, strong duality holds if there exists an $$x$$ such that

$$f_i(x) < 0, \quad i = 1, \ldots, m$$
$$Ax = b$$
Dual SVM

\[
\min_w \frac{1}{2} \|w\|^2
\]

such that

\[
y_i (w^T x^{(i)} + b) \geq 1, \text{ for all } i
\]

• Note that Slater’s condition holds as long as the data is linearly separable
Dual SVM

\[L(w, b, \lambda) = \frac{1}{2} w^T w + \sum_{i} \lambda_i (1 - y_i (w^T x^{(i)} + b)) \]

Convex in \(w \), so take derivatives to form the dual

\[\frac{\partial L}{\partial w_k} = w_k + \sum_{i} -\lambda_i y_i x^{(i)}_k = 0 \]

\[\frac{\partial L}{\partial b} = \sum_{i} -\lambda_i y_i = 0 \]
Dual SVM

\[L(w, b, \lambda) = \frac{1}{2} w^T w + \sum_{i} \lambda_i (1 - y_i (w^T x^{(i)} + b)) \]

Convex in \(w \), so take derivatives to form the dual

\[w = \sum_{i} \lambda_i y_i x^{(i)} \]

\[\sum_{i} \lambda_i y_i = 0 \]
Dual SVM

\[
\max_{\lambda \geq 0} \left[-\frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j x^{(i)T} x^{(j)} + \sum_i \lambda_i \right]
\]

such that

\[
\sum_i \lambda_i y_i = 0
\]

• By strong duality, solving this problem is equivalent to solving the primal problem
• Given the optimal \(\lambda\), we can easily construct \(w\) (\(b\) can be found by complementary slackness)
Complementary Slackness

- Suppose that there is zero duality gap
- Let x^* be an optimum of the primal and (λ^*, ν^*) be an optimum of the dual

\[
f_0(x^*) = g(\lambda^*, \nu^*)
\]

\[
= \inf_x \left[f_0(x) + \sum_{i=1}^m \lambda^*_i f_i(x) + \sum_{i=1}^p \nu^*_i h_i(x) \right]
\]

\[
\leq f_0(x^*) + \sum_{i=1}^m \lambda^*_i f_i(x^*) + \sum_{i=1}^p \nu^*_i h_i(x^*)
\]

\[
= f_0(x^*) + \sum_{i=1}^m \lambda^*_i f_i(x^*)
\]

\[
\leq f_0(x^*)
\]
Complementary Slackness

• This means that

\[\sum_{i=1}^{m} \lambda_i^* f_i(x^*) = 0 \]

• As \(\lambda \geq 0 \) and \(f_i(x_i^*) \leq 0 \), this can only happen if \(\lambda_i^* f_i(x^*) = 0 \) for all \(i \)

• Put another way,

 • If \(f_i(x^*) < 0 \) (i.e., the constraint is not tight), then \(\lambda_i^* = 0 \)

 • If \(\lambda_i^* > 0 \), then \(f_i(x^*) = 0 \)

• ONLY applies when there is no duality gap
Dual SVM

\[
\max_{\lambda \geq 0} - \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j x^{(i)T} x^{(j)} + \sum_i \lambda_i
\]

such that

\[
\sum_i \lambda_i y_i = 0
\]

• By complementary slackness, \(\lambda_i^* > 0 \) means that \(x^{(i)} \) is a support vector (can then solve for \(b \) using \(w \))
Dual SVM

\[
\max_{\lambda \geq 0} -\frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j x^{(i)T} x^{(j)} + \sum_i \lambda_i
\]

such that

\[
\sum_i \lambda_i y_i = 0
\]

- Takes \(O(n^2)\) time just to evaluate the objective function
- Active area of research to try to speed this up