SVMs with Slack

Nicholas Ruozzi
University of Texas at Dallas

Based roughly on the slides of David Sontag
Dual SVM

\[
\max_{\lambda \geq 0} -\frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j x^{(i)^T} x^{(j)} + \sum_i \lambda_i
\]

such that

\[
\sum_i \lambda_i y_i = 0
\]

• The dual formulation only depends on inner products between the data points

• Same thing is true if we use feature vectors instead
Dual SVM

\[
\max_{\lambda \geq 0} \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j \Phi(x^{(i)})^T \Phi(x^{(j)}) + \sum_i \lambda_i
\]

such that

\[
\sum_i \lambda_i y_i = 0
\]

• The dual formulation only depends on inner products between the data points

• Same thing is true if we use feature vectors instead
The Kernel Trick

- For some feature vectors, we can compute the inner products quickly, even if the feature vectors are very large.
- This is best illustrated by example.

Let $\phi(x_1, x_2) = \begin{bmatrix} x_1 x_2 \\ x_2 x_1 \\ x_1^2 \\ x_2^2 \end{bmatrix}$

- $\phi(x_1, x_2)^T \phi(z_1, z_2) = x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2$
- $= (x_1 z_1 + x_2 z_2)^2$
- $= (x^T z)^2$
The Kernel Trick

- For some feature vectors, we can compute the inner products quickly, even if the feature vectors are very large.
- This is best illustrated by example.

Let \(\phi(x_1, x_2) = \begin{bmatrix} x_1 x_2 \\ x_2 x_1 \\ x_1^2 \\ x_2^2 \end{bmatrix} \)

\[\begin{align*}
\phi(x_1, x_2)^T \phi(z_1, z_2) &= x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2 \\
&= (x_1 z_1 + x_2 z_2)^2 \\
&= (x^T z)^2
\end{align*}\]

Reduces to a dot product in the original space.
The Kernel Trick

• The same idea can be applied for the feature vector ϕ of all polynomials of degree (exactly) d

 $\phi(x)^T \phi(z) = (x^T z)^d$

• More generally, a kernel is a function $k(x, z) = \phi(x)^T \phi(z)$ for some feature map ϕ

• Rewrite the dual objective

$$\max_{\lambda \geq 0, \sum_i \lambda_i y_i = 0} -\frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j k(x^{(i)}, x^{(j)}) + \sum_i \lambda_i$$
Examples of Kernels

- Polynomial kernel of degree exactly d

 $$k(x, z) = (x^T z)^d$$

- General polynomial kernel of degree d for some c

 $$k(x, z) = (x^T z + c)^d$$

- Gaussian kernel for some σ

 $$k(x, z) = \exp \left(\frac{-\|x-z\|^2}{2\sigma^2} \right)$$

- The corresponding ϕ is infinite dimensional!

- So many more...
Gaussian Kernels

• Consider the Gaussian kernel

\[
\exp \left(\frac{-||x - z||^2}{2\sigma^2} \right) = \exp \left(\frac{-(x - z)^T(x - z)}{2\sigma^2} \right)
\]

\[
= \exp \left(\frac{-||x||^2 + 2x^Tz - ||z||^2}{2\sigma^2} \right)
\]

\[
= \exp \left(-\frac{||x||^2}{2\sigma^2} \right) \exp \left(-\frac{||z||^2}{2\sigma^2} \right) \exp \left(\frac{x^Tz}{\sigma^2} \right)
\]

• Use the Taylor expansion for \(\exp() \)

\[
\exp \left(\frac{x^Tz}{\sigma^2} \right) = \sum_{n=0}^{\infty} \frac{(x^Tz)^n}{\sigma^{2n}n!}
\]
Gaussian Kernels

• Consider the Gaussian kernel

\[
\exp \left(-\frac{\|x - z\|^2}{2\sigma^2} \right) = \exp \left(-\frac{(x - z)^T(x - z)}{2\sigma^2} \right)
\]

\[
= \exp \left(-\frac{\|x\|^2 + 2x^Tz - \|z\|^2}{2\sigma^2} \right)
\]

\[
= \exp \left(-\frac{\|x\|^2}{2\sigma^2} \right) \exp \left(-\frac{\|z\|^2}{2\sigma^2} \right) \exp \left(\frac{x^Tz}{\sigma^2} \right)
\]

• Use the Taylor expansion for \(\exp()\)

\[
\exp \left(\frac{x^Tz}{\sigma^2} \right) = \sum_{n=0}^{\infty} \frac{(x^Tz)^n}{\sigma^{2n}n!}
\]

Polynomial kernels of every degree!
Kernels

• Bigger feature space increases the possibility of overfitting
 • Large margin solutions may still generalize reasonably well

• Alternative: add “penalties” to the objective to disincentivize complicated solutions

\[
\min_{w} \frac{1}{2} \|w\|^2 + c \cdot (\# \text{ of misclassifications})
\]

• Not a quadratic program anymore (in fact, it’s NP-hard)

• Similar problem to Hamming loss, no notion of how badly the data is misclassified
SVMs with Slack

• Allow misclassification
 • Penalize misclassification linearly (just like in the perceptron algorithm)
 • Again, easier to work with than the Hamming loss
 • Objective stays convex
 • Will let us handle data that isn’t linearly separable!
SVMs with Slack

\[
\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_i \xi_i
\]

such that

\[
y_i(w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i
\]

\[
\xi_i \geq 0, \text{ for all } i
\]
SVMs with Slack

\[
\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_i \xi_i
\]

such that

\[
y_i(w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i
\]

\[
\xi_i \geq 0, \text{ for all } i
\]

Potentially allows some points to be misclassified/inside the margin.
SVMs with Slack

\[
\min_{w,b,\xi} \frac{1}{2} ||w||^2 + \frac{c}{2} \sum_{i} \xi_i \\
\text{such that}
\]

\[y_i (w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i\]

\[\xi_i \geq 0, \text{ for all } i\]

Constant c determines degree to which slack is penalized
SVMs with Slack

\[
\min_{\mathbf{w}, b, \xi} \frac{1}{2} \|\mathbf{w}\|^2 + c \sum_i \xi_i
\]

such that

\[y_i (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i\]

\[\xi_i \geq 0, \text{ for all } i\]

• How does this objective change with \(c\)?
SVMs with Slack

\[
\min_{w, b, \xi} \frac{1}{2} ||w||^2 + c \sum_i \xi_i
\]

such that

\[y_i (w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i\]

\[\xi_i \geq 0, \text{ for all } i\]

• How does this objective change with \(c\)?

 • As \(c \to \infty\), requires a perfect classifier

 • As \(c \to 0\), allows arbitrary classifiers (i.e., ignores the data)
SVMs with Slack

\[
\min_{w, b, \xi} \frac{1}{2} \|w\|^2 + c \sum_i \xi_i
\]

such that

\[
y_i (w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i
\]

\[
\xi_i \geq 0, \text{ for all } i
\]

- How should we pick \(c\)?
SVMS with Slack

\[
\min_{w, b, \xi} \frac{1}{2} \|w\|^2 + c \sum_i \xi_i
\]

such that

\[y_i (w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i\]

\[\xi_i \geq 0, \text{ for all } i\]

• How should we pick \(c\)?

• Divide the data into three pieces training, testing, and validation

• Use the validation set to tune the value of the hyperparameter \(c\)
Validation Set

• General learning strategy
 • Build a classifier using the training data
 • Select hyperparameters using validation data
 • Evaluate the chosen model with the selected hyperparameters on the test data
SVMs with Slack

\[
\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_i \xi_i
\]

such that

\[
y_i (w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i
\]

\[
\xi_i \geq 0, \text{ for all } i
\]

- What is the optimal value of \(\xi\) for fixed \(w\) and \(b\)?
SVMs with Slack

\[\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + c \sum_i \xi_i \]

such that

\[y_i (w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i \]

\[\xi_i \geq 0, \text{ for all } i \]

• What is the optimal value of \(\xi \) for fixed \(w \) and \(b \)?

• If \(y_i (w^T x^{(i)} + b) \geq 1 \), then \(\xi_i = 0 \)

• If \(y_i (w^T x^{(i)} + b) < 1 \), then \(\xi_i = 1 - y_i (w^T x^{(i)} + b) \)
SVMs with Slack

\[
\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_i \xi_i
\]

such that

\[
y_i(w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i
\]

\[
\xi_i \geq 0, \text{ for all } i
\]

• We can formulate this slightly differently

• \(\xi_i = \max\{0, 1 - y_i(w^T x^{(i)} + b)\} \)

• Does this look familiar?

• Hinge loss provides an upper bound on Hamming loss
Hinge Loss Formulation

- Obtain a new objective by substituting in for ξ

$$
\min_{w,b} \frac{1}{2} \|w\|^2 + c \sum_i \max\{0, 1 - y_i(w^T x^{(i)} + b)\}
$$

Can minimize with gradient descent!
Hinge Loss Formulation

• Obtain a new objective by substituting in for ξ

$$
\min_{w,b} \frac{1}{2} \|w\|^2 + c \sum_i \max\{0, 1 - y_i (w^T x^{(i)} + b)\}
$$

Penalty to prevent overfitting

Hinge loss
Hinge Loss Formulation

• Obtain a new objective by substituting in for ξ

$$\min_{w,b} \frac{\lambda}{2} ||w||^2 + c \sum_i \max\{0, 1 - y_i(w^T x^{(i)} + b)\}$$

λ controls the amount of regularization

How should we pick λ?
If the data is imbalanced (i.e., more positive examples than negative examples), may want to evenly distribute the error between the two classes

\[
\begin{align*}
\min_{w,b,\xi} & \frac{1}{2} \|w\|^2 + \frac{c}{N_+} \sum_{i:y_i=1} \xi_i + \frac{c}{N_-} \sum_{i:y_i=-1} \xi_i \\
\text{such that} & \quad y_i (w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i \\
& \quad \xi_i \geq 0, \text{ for all } i
\end{align*}
\]
Dual of Slack Formulation

\[
\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + c \sum_i \xi_i
\]

such that

\[
y_i(w^T x^{(i)} + b) \geq 1 - \xi_i, \text{ for all } i
\]

\[
\xi_i \geq 0, \text{ for all } i
\]
Dual of Slack Formulation

\[L(w, b, \xi, \lambda, \mu) = \frac{1}{2} w^T w + c \sum_i \xi_i + \sum_i \lambda_i (1 - \xi_i - y_i (w^T x^{(i)} + b)) + \sum_i -\mu_i \xi_i \]

Convex in \(w, b, \xi \), so take derivatives to form the dual

\[
\frac{\partial L}{\partial w_k} = w_k + \sum_i -\lambda_i y_i x^{(i)}_k = 0
\]

\[
\frac{\partial L}{\partial b} = \sum_i -\lambda_i y_i = 0
\]

\[
\frac{\partial L}{\partial \xi_k} = c - \lambda_k - \mu_k = 0
\]
Dual of Slack Formulation

\[
\max_{\lambda \geq 0} \left\{ -\frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j x^{(i)^T} x^{(j)} + \sum_i \lambda_i \right\}
\]

such that

\[
\sum_i \lambda_i y_i = 0
\]

\[
c \geq \lambda_i \geq 0, \text{ for all } i
\]
Summary

• Gather Data + Labels
• Select features vectors
• Randomly split into three groups
 • Training set
 • Validation set
 • Test set
• Experimentation cycle
 • Select a “good” hypothesis from the hypothesis space
 • Tune hyperparameters using validation set
 • Compute accuracy on test set (fraction of correctly classified instances)
We argued, intuitively, that SVMs generalize better than the perceptron algorithm.

- How can we make this precise?
- Coming soon... but first...
Roadmap

• Where are we headed?

 • Other types of hypothesis spaces for supervised learning
 • k nearest neighbor
 • Decision trees

 • Learning theory
 • Generalization and PAC bounds
 • VC dimension
 • Bias/variance tradeoff