## CS 7301: Advanced Machine Learning

Fall 2016### Course Info

**Where:**ECSS 2.203

**When:**MW, 11:30am-12:45pm

**Instructor:**Nicholas Ruozzi

**Office Hours:**Tuesday 10am-11am and by appointment in ECSS 3.409

**TA:**Dhruv Patel

**Office Hours:**Tuesday & Thursday 4pm-5pm in the open lab ECSS 2.104.A1

**Grading:**problem sets (50%), midterm (20%), final (30%)

Attendance is

**MANDATORY**. The instructor reserves the right to lower final grades as a result of poor attendance.

**Prerequisites:**some familiarity with basic probability, algorithms, multivariable calculus, and linear algebra.

### Schedule & Lecture Slides

Week | Dates | Topic | Readings |

1 | Aug. 21 & 23 | Introduction & Regression Perceptron | Bishop, Ch. 1 |

2 | Aug. 29 & Aug. 31 | Support Vector Machines Duality & Kernel Methods | Lecture Notes by Andrew Ng Bishop, Ch. 7 for a different perspective Barber, Ch. 17.5 Boyd, Ch. 5 |

3 | Sept. 7 | Support Vector Machines with Slack | Bishop, Ch. 7.1, SVMs & SVMs with slack |

4 | Sept. 14 & 16 | Decision Trees k Neareset Neighbor | Mitchell, Ch. 3
Bishop, Ch. 14.4 |

5 | Sept. 19 & 21 | Learning Theory & PAC Bounds VC Dimension & Bias/Variance Trade-off | Ng, PAC Learning Notes |

6 | Sept. 26 & 38 | Bias/Variance Trade-off & Bagging Boosting |
Bishop, Ch. 14 Hastie et al., Ch. 8.7 & Ch. 15 Short Intro. to AdaBoost |

7 | Oct. 5 & 7 | Clustering PCA | Hastie et al., Ch. 14.3.6, 14.3.8, 14.3.9, 14.3.12 Bishop, Ch. 9.1 PCA Notes |

8 | Oct. 10 & 12 | Midterm (in class Oct. 12) | More PCA |

9 | Oct. 17 & 19 | Bayesian Methods
Naive Bayes | Bishop, 1.5, 4.2-4.3.4 Bishop, 2-2.3.4 |

10 | Oct. 24 & 26 |
Logistic Regression Gaussian Mixture Models | Bishop, 8.4.1, 9.2, 9.3, 9.4 Other Mixture Model Notes (1) (2) |

11 | Nov. 2 & 4 | Hidden Markov Models | Bishop 13.1-2,Other HMM Notes |

12 | Nov. 7 & 9 |
Bayesian Networks LDA | LDA Survey Article Intro. to Bayesian Networks Bishop 8.1 |

12 | Nov. 14 & 16 | Collaborative Filtering | |

13 | Nov. 28 & 30 | Neural Networks | Nielsen Ch. 1-3 Bishop 5.1-5.3 ConvNetJS Demos |

14 | Dec. 5 & Dec. 7 | Reinforcement Learning Review | Sample Exams [1] [2] |

### Problem Sets

All problem sets will be available on the eLearning site and are to be turned in there. See the homework guidelines below for the homework policies.

### Textbooks & References

The following textbook will be used for the course.

*Pattern Recognition and Machine Learning*by Christopher M. Bishop

*Bayesian Reasoning and Machine Learning*by David Barber (free online)*Machine Learning*by Tom Mitchell*Machine Learning: a Probabilistic Perspective*by Kevin Murphy

### Exams

All exams will be closed book and closed notes.

**Midterm:**October 10, in class.**Final:**Dec. 14th, 11:00am### Homework Guidelines*

I expect you to try solving each problem set on your own. However, if you get stuck on a problem, I encourage you to collaborate with other students in the class, subject to the following rules:

- You may discuss a problem with any student in this class, and work together on solving it. This can involve brainstorming and verbally discussing the problem, going together through possible solutions, but should not involve one student telling another a complete solution.
- Once you solve the homework, you must write up your solutions on your own, without looking at other people's write-ups or giving your write-up to others.
- In your solution for each problem, you must write down the names of any person with whom you discussed it. This will not affect your grade.
- Do not consult solution manuals or other people's solutions from similar courses - ask the course staff, we are here to help!

**Late homeworks**will**NOT**be accepted except in extreme circumstances or those permitted by university policy (e.g., a religious holiday). All such exceptions**MUST**be cleared in advance of the due date.**adpated from David Sontag*