Logistic Regression

Nicholas Ruozzi
University of Texas at Dallas

based on the slides of Vibhav Gogate
Last Time

• Supervised learning via naive Bayes
 – Use MLE to estimate a distribution $p(x, y) = p(y)p(x|y)$
 – Classify by looking at the conditional distribution, $p(y|x)$

• Today: logistic regression
Logistic Regression

• Learn $p(Y|X)$ directly from the data

 – Assume a particular functional form, e.g., a linear classifier $p(Y = 1|x) = 1$ on one side and 0 on the other

 – Not differentiable...

 • Makes it difficult to learn

 • Can’t handle noisy labels
Logistic Regression

- Learn $p(y|x)$ directly from the data
 - Assume a particular functional form

 \[
 p(Y = -1|x) = \frac{1}{1 + \exp(w^T x + b)}
 \]

 \[
 p(Y = 1|x) = \frac{\exp(w^T x + b)}{1 + \exp(w^T x + b)}
 \]
Logistic Function in m Dimensions

$$p(Y = -1|x) = \frac{1}{1 + \exp(w^T x + b)}$$

Can be applied to discrete and continuous features
Functional Form: Two classes

• Given some \(w \) and \(b \), we can classify a new point \(x \) by assigning the label 1 if \(p(Y = 1|x) > p(Y = -1|x) \) and
 — 1 otherwise

 — This leads to a linear classification rule:

 • Classify as a 1 if \(w^T x + b > 0 \)

 • Classify as a \(-1\) if \(w^T x + b < 0 \)
Learning the Weights

- To learn the weights, we maximize the conditional likelihood

\[(w^*, b^*) = \arg \max_{w, b} \prod_{i=1}^{N} p(y^{(i)} | x^{(i)}, w, b)\]

- This is not the same strategy that we used in the case of naive Bayes
 - For naive Bayes, we maximized the log-likelihood, not the conditional log-likelihood
Generative vs. Discriminative Classifiers

Generative classifier:
(e.g., Naïve Bayes)
- Assume some **functional form** for $p(x|y), p(y)$
- Estimate parameters of $p(x|y), p(y)$ directly from training data
- Use Bayes rule to calculate $p(y|x)$
- This is a **generative model**
 - Indirect computation of $p(Y|X)$ through Bayes rule
 - As a result, can also generate a sample of the data,
 $p(x) = \sum_y p(y)p(x|y)$

Discriminative classifiers:
(e.g., Logistic Regression)
- Assume some **functional form for** $p(y|x)$
- Estimate parameters of $p(y|x)$ directly from training data
- This is the **discriminative model**
 - Directly learn $p(y|x)$
 - But **cannot obtain a sample of the data** as $p(x)$ is not available
 - Useful for discriminating labels
Learning the Weights

\[\ell(w, b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \left(w^T x^{(i)} + b \right) - \ln \left(1 + \exp(w^T x^{(i)} + b)\right) \]
Learning the Weights

\[\ell(w, b) = \ln \prod_{i=1}^{N} p(y(i) | x(i), w, b) \]

\[= \sum_{i=1}^{N} \ln p(y(i) | x(i), w, b) \]

\[= \sum_{i=1}^{N} \frac{y(i) + 1}{2} \ln \frac{p(Y = 1 | x(i), w, b)}{p(Y = -1 | x(i), w, b)} + \left(1 - \frac{y(i) + 1}{2}\right) \ln p(Y = -1 | x(i), w, b) \]

\[= \sum_{i=1}^{N} \frac{y(i) + 1}{2} \left(w^T x(i) + b\right) - \ln(1 + \exp(w^T x(i) + b)) \]

This is concave in \(w \) and \(b \): take derivatives and solve!
Learning the Weights

\[
\ell(w, b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)
\]

\[
= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b)
\]

\[
= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b)
\]

\[
= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{\frac{y^{(i)} + 1}{2}}{\frac{1}{2}} + \ln p(Y = -1|x^{(i)}, w, b)
\]

\[
= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \left(w^T x^{(i)} + b\right) - \ln \left(1 + \exp\left(w^T x^{(i)} + b\right)\right)
\]

No closed form solution 😞
Learning the Weights

- Can apply gradient ascent to maximize the conditional likelihood

\[
\frac{\partial \ell}{\partial b} = \sum_{i=1}^{N} \left[\frac{y^{(i)} + 1}{2} - p(Y = 1|x^{(i)}, w, b) \right]
\]

\[
\frac{\partial \ell}{\partial w_j} = \sum_{i=1}^{N} x^{(i)}_j \left[\frac{y^{(i)} + 1}{2} - p(Y = 1|x^{(i)}, w, b) \right]
\]
• Can define priors on the weights and bias to prevent overfitting

 – Normal distribution, zero mean, identity covariance

\[
p(w) = \prod_j \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{w_j^2}{2\sigma^2}\right)
\]

 – “Pushes” parameters towards zero

• Regularization

 – Helps avoid very large weights and overfitting
Priors as Regularization

• The log-MAP objective with this Gaussian prior is then

$$\ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) p(w)p(b) = \left[\sum_{i} \ln p(y^{(i)}|x^{(i)}, w, b) \right] - \frac{\lambda}{2} (\|w\|_2^2 + b^2)$$

– Quadratic penalty: drives weights towards zero

– Adds a negative linear term to the gradients

– Different priors can produce different kinds of regularization
Priors as Regularization

- The log-MAP objective with this Gaussian prior is then

\[
\ln \prod_{i=1}^{N} p(y^{(i)} | x^{(i)}, w, b) p(w)p(b) = \left[\sum_{i}^{N} \ln p(y^{(i)} | x^{(i)}, w, b) \right] - \frac{\lambda}{2} (||w||_2^2 + b^2)
\]

- Quadratic penalty: drives weights towards zero
- Adds a negative linear term to the gradients
- Different priors can produce different kinds of regularization
Regularization

\[\ell_1 \]

\[\ell_2 \]
Naïve Bayes vs. Logistic Regression

- Generative vs. Discriminative classifiers
- Non-asymptotic analysis (for Gaussian NB)
 - Convergence rate of parameter estimates, \((m = \# \text{ of attributes in } X)\)
 - Size of training data to get close to infinite data solution
 - Naïve Bayes needs \(O(\log m)\) samples
 - NB converges quickly to its (perhaps less helpful) asymptotic estimates
 - Logistic Regression needs \(O(m)\) samples
 - LR converges slower but makes no independence assumptions (typically less biased)

[Ng & Jordan, 2002]
NB vs. LR (on UCI datasets)

Sample size m

[Ng & Jordan, 2002]
LR in General

- Suppose that $y \in \{1, \ldots, R\}$, i.e., that there are R different class labels

- Can define a collection of weights and biases as follows

 - Choose a vector of biases and a matrix of weights such that for $y \neq R$

 $$p(Y = k|x) = \frac{\exp(b_k + \sum_i w_{ki}x_i)}{1 + \sum_{j<R} \exp(b_j + \sum_i w_{ji}x_i)}$$

 and

 $$p(Y = R|x) = \frac{1}{1 + \sum_{j<R} \exp(b_j + \sum_i w_{ji}x_i)}$$