Course Info.

- Instructor: Nicholas Ruozzi
 - Office: ECSS 2.203
 - Office hours: Tues. 10am-11am
- TA: ?
 - Office hours and location?
- Course website: www.utdallas.edu/~nrr150130/cs7301/2016fa/
Prerequisites

• “Mathematical sophistication”
 – Basic probability
 – Linear algebra
 • Eigenvalues, eigenvectors, matrices, vectors, etc.
 – Multivariate calculus
 • Derivatives, integration, gradients, Lagrange multipliers, etc.

• I’ll review some concepts as we come to them, but you should brush up in areas that you aren’t as comfortable
Grading

• 5-6 problem sets (50%)
 – See collaboration policy on the web
 – Mix of theory and programming (in MATLAB)
 – Available and turned in on eLearning
 – Approximately one assignment every two weeks

• Midterm Exam (20%)

• Final Exam (30%)

subject to change
Course Topics

• Dimensionality reduction
 – PCA
 – Matrix Factorizations

• Learning
 – Supervised, unsupervised, active, reinforcement, ...
 – Learning theory: PAC learning, VC dimension
 – SVMs & kernel methods
 – Decision trees, k-NN, ...
 – Parameter estimation: Bayesian methods, MAP estimation, maximum likelihood estimation, expectation maximization, ...
 – Clustering: k-means & spectral clustering

• Graphical models
 – Neural networks
 – Bayesian networks: naïve Bayes

• Statistical methods
 – Boosting, bagging, bootstrapping
 – Sampling

• Ranking & Collaborative Filtering
What is ML?
What is ML?

“A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.”

- Tom Mitchell
Basic Machine Learning Paradigm

- Collect data
- Build a model using “training” data
- Use model to make predictions
Supervised Learning

• Input: \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\)

 – \(x^{(i)}\) is the \(i^{th}\) data item and \(y^{(i)}\) is the \(i^{th}\) label

• Goal: find a function \(f\) such that \(f(x^{(i)})\) is a “good approximation” to \(y^{(i)}\)

 – Can use it to predict \(y\) values for previously unseen \(x\) values
Examples of Supervised Learning

• Spam email detection

• Handwritten digit recognition

• Stock market prediction

• More?
Supervised Learning

- **Hypothesis space**: set of allowable functions $f : X \rightarrow Y$

- **Goal**: find the “best” element of the hypothesis space

 - How do we measure the quality of f?
Types of Learning

• **Supervised**
 – The training data includes the desired output

• **Unsupervised**
 – The training data does not include the desired output

• **Semi-supervised**
 – Some training data comes with the desired output

• **Active learning**
 – Semi-supervised learning where the algorithm can ask for the correct outputs for specifically chosen data points

• **Reinforcement learning**
 – The learner interacts with the world via allowable actions which change the state of the world and result in rewards
 – The learner attempts to maximize rewards through trial and error
Regression
Hypothesis class: linear functions $f(x) = ax + b$

How do we measure the quality of the approximation?
Linear Regression

• In typical regression applications, measure the fit using a squared **loss function**

\[L(f, y_i) = (f(x^{(i)}) - y^{(i)})^2 \]

• Want to minimize the average loss on the **training data**

• For 2-D linear regression, the learning problem is then

\[\min_{a, b} \frac{1}{n} \sum_i (ax^{(i)} + b - y^{(i)})^2 \]

• For an unseen data point, \(x \), the learning algorithm predicts \(f(x) \)
Linear Regression

$$\min_{a,b} \frac{1}{n} \sum_i (ax^{(i)} + b - y^{(i)})^2$$

- How do we find the optimal a and b?
Linear Regression

$$\min_{a,b} \frac{1}{n} \sum_{i} (ax^{(i)} + b - y^{(i)})^2$$

- How do we find the optimal a and b?
 - Solution 1: take derivatives and solve (there is a closed form solution!)
 - Solution 2: use gradient descent
Linear Regression

\[
\min_{a,b} \frac{1}{n} \sum_{i} (ax^{(i)} + b - y^{(i)})^2
\]

- How do we find the optimal \(a \) and \(b \)?
 - Solution 1: take derivatives and solve (there is a closed form solution!)
 - Solution 2: use gradient descent
 - This approach is much more likely to be useful for general loss functions
Gradient Descent

Iterative method to minimize a differentiable function f

- Pick an initial point x_0
- Iterate until convergence

\[x_{t+1} = x_t - \gamma_t \nabla f(x_t) \]

where γ_t is the t^{th} step size
Gradient Descent

Gradient Descent

$$\min_{a,b} \frac{1}{n} \sum_{i} (ax^{(i)} + b - y^{(i)})^2$$

- What is the gradient of this function?

- What does the gradient descent iteration look like for this simple regression problem?
Linear Regression

• In higher dimensions, the linear regression problem is essentially the same only $x^{(i)} \in \mathbb{R}^m$

$$
\min_{a \in \mathbb{R}^m, b} \frac{1}{n} \sum_{i} (a^T x^{(i)} + b - y^{(i)})^2
$$

• Can still use gradient descent to minimize this
 – Not much more difficult than the $m = 1$ case
Gradient Descent

- Gradient descent converges under certain technical conditions on the function f and the step size γ_t
 - If f is convex, then any fixed point of gradient descent must correspond to a global optimum of f
 - In general, convergence is only guaranteed to a local optimum
Regression

• What if we enlarge the hypothesis class?
 – Quadratic functions
 – k degree polynomials

• Can we always learn better with a larger hypothesis class?
Regression

• What if we enlarge the hypothesis class?
 – Quadratic functions
 – k degree polynomials

• Can we always learn better with a larger hypothesis class?
Regression

• What if we enlarge the hypothesis class?
 – Quadratic functions
 – k degree polynomials

• Can we always learn better with a larger hypothesis class?
 – Larger hypothesis space always decreases the cost function, but this does NOT necessarily mean better predictive performance
 – This phenomenon is known as overfitting

• Ideally, we would select the simplest hypothesis consistent with the observed data
Binary Classification

• Regression operates over a continuous set of outcomes

• Suppose that we want to learn a function $f: X \rightarrow \{0,1\}$

• As an example:

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

How do we pick the hypothesis space?

How do we find the best f in this space?
Binary Classification

- Regression operates over a continuous set of outcomes
- Suppose that we want to learn a function \(f : X \rightarrow \{0,1\} \)
- As an example:

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

How many functions with three binary inputs and one binary output are there?
Binary Classification

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

2^8 possible functions

2^4 are consistent with the observations

How do we choose the best one?

What if the observations are noisy?
Challenges in ML

• How to choose the right hypothesis space?
 – Number of factors influence this decision: difficulty of learning over the chosen space, how expressive the space is

• How to evaluate the quality of our learned hypothesis?
 – Prefer “simpler” hypotheses (to prevent overfitting)
 – Want the outcome of learning to generalize to unseen data
Challenges in ML

• How do we find the best hypothesis?
 – This can be an NP-hard problem!
 – Need fast, scalable algorithms if they are to be applicable to real-world scenarios