Seeing Depth
The Cue Approach

• Monocular/Pictorial
 – Cues that are available in the 2D image

Occlusion

Height in the Field of View

Atmospheric Perspective
Linear Perspective

Size and Distance

Emmert’s Law

\[S_p = C(S_r \times P_p) \]

where

- \(S_p \) = perceived size
- \(S_r \) = retinal size
- \(P_p \) = perceived distance
Seeing Depth
The Cue Approach

• Binocular
 – stereopsis
 • disparity
 – oculomotor cues
 • Muscle proprioception

Disparity = \theta_1 - \theta_2

Perceiving Objects and Forms

• Task overview and history
 – examples, dogs/horses

• Gestalt Approach
 – Principles of perceptual organization
 – Figure ground separation

• Perceptual Processing Theories
 – Triesman - Feature Integration Theory
 – Marr - Generalized Cones
 – Biederman - Recognition by Components
 – Bulthoff & Edelman & Poggio - Image-based interpolation
Task and Historical Perspective

- Surface perception
 - a complete 3D representation or map of scene - motion, stereo etc.
 - segment into “figure” and “ground”

- Segment/parsing into objects
 - Which points in map belong to same objects?

- Recognize and identity objects
 - represent, remember and match to memory

- Scene perception
 - conglomerations of objects
 - layout

Performance Factors

- knowledge and experience
- principles of perceptual organization
- attention
- expectations
- Gestalt psychology
- Max Wertheimer (1912)
- whole > sum of parts

Laws of perceptual organization

- Pragnanz - good figure
 - Stimuli should be interpreted so that the resulting form is ASAP
- Similarity
 - Similar shapes, orientations, colors should be grouped together
- Proximity
 - Close things should be grouped together
- Common fate
 - Motion in the same direction should be grouped together
- Meaningfulness and familiarity
 - Groups should look familiar

- Good figure
 * form asap

- Similarity
 - group elements that are similar together
Proximity & Similarity

group elements that are proximal

1. **•** weaker grouping principles—group parallel and symmetric elements together

2. **•** Common fate:
 - group elements moving in the same direction together
• Figure-ground Heuristics
 • Figure is more “thing-like” and memorable
 • Figure is further front
 • Figure “owns” the contour
 • Ground is “unformed”

• Determinants of F-G separation
 • symmetry - figures are often symmetric
 • convexity - figures bulge out
 • area - figures usually smaller
 • orientation - horizontal and vertical
 • meaning - figures have meaning (can sometimes be recognized)

• Problem - quantifying these rules …..Modern Gestaltists

• Quantify - perceptual
 • What stimulus properties are responsible for grouping?
 • How does grouping affect access of information from displays?

• Quantify - visual cognitive - objects
 • Treisman (80’s)
 • Preattentive and attentive processes
 • Marr (82)
 • Represent in object-centered coordinates - 3D representation
 • Biederman (86)
 • Can’t really do it… but can approximate it with intelligent image analysis
 • Bulthoff, Edelman, Poggio (90’s)
 • Can’t do this at all - and you don’t really need to

• Treisman & Gelade (82) - feature integration theory

• Preattentive processing
 • primitives, features
 • “words in the language of vision”
 • Unbound to location
 • tests of preattentive processing
 • “pop-out” for “features”
 • visual search for features (color, etc)
 • parallel with number of distracting items
 • independent access
 • Illusory conjunctions
 • red triangle - blue square - green circle
• II. Focused Attention
 • Attention
 – “glue” with which features are bound into objects
 – bound to locations
 – Objects = conjunctions of features
 • tests of attentive processing
 – No “pop-out”
 – visual search for conjunctions of features red square
 » serial with number of distracting items (RS RT)
 » Co-dependent access

Object and Shape Recognition Theories
 • Direct analysis of shapes
 – Problems
 • Viewing angle
 • Photometric problems - illumination, viewpoint, shadows, highlights
 • Object setting - isolation, occlusion
 • Rigid, non-rigid - animated
 • Shape invariants
 – Properties of shape common to all views
 – Feature list that specifies object
 • Good - some success in limited situations
 • Bad - not generally applicable

Object and Shape Recognition Theories (continued)
 • Structural description
 • Find parts
 • Identify parts
 • Describe structural relations among the parts
 – examples - Bottom-up Approaches
 • Feature hierarchies Pandemonium model (Selridge,59)
 • Generalized Cone as Parts - (Marr, 82)
 – Raw primal sketch
 – 21/2 D sketch
 – 3D object-centered representations
Object and Shape Recognition Theories (continued)

- Recognition by components (Biederman, 86)
 - Geons (about 50)
 - Least changeable with viewpoint
 - Maximize image features that generalize
 - Psychological evidence
 - Accidental and non-accidental views

Object and Shape Recognition Theories (continued)

- Image-based models (continued)
 - Interpolation models (Poggio & Edelman, 91)
 - 2D image analysis
 - Store multiple views
 - Interpolate in image space
 - Special or canonical views
 - Alignment models (Ullman 90’s)
 - Within a category - solve correspondence
 - Align to a “special” view
 - Transform from 2D to 3D
 - Match