Seeing Depth
The Cue Approach

- Monocular/Pictorial
 - Cues that are available in the 2D image

Occlusion

Height in the Field of View

Atmospheric Perspective

Linear Perspective

Linear Perspective & Texture
Size and Distance

Emmert’s Law

\[S_p = C(S_r \times P_p) \]

where

- \(S_p \) = perceived size
- \(S_r \) = retinal size
- \(P_p \) = perceived distance

Ames Room

Shading and more...
Seeing Depth
The Cue Approach

- Binocular
 - stereopsis
 - disparity
 - oculomotor cues
 - Muscle proprioception

Perceiving Objects and Forms

- Task overview and history
 - examples, dogs/horses

- Gestalt Approach
 - Principles of perceptual organization
 - Figure ground separation

- Perceptual Processing Theories
 - Triesman - Feature Integration Theory
 - Marr - Generalized Cones
 - Biederman - Recognition by Components
 - Bülthoff & Edelman & Poggio - Image-based interpolation
Task and Historical Perspective

- Surface perception
 - a complete 3D representation or map of scene - motion, stereo etc.
 - segment into “figure” and “ground”

- Segment/parse into objects
 - Which points in map belong to same objects?

- Recognize and identify objects
 - represent, remember and match to memory

- Scene perception
 - conglomerations of objects
 - layout

Performance Factors

- knowledge and experience
- principles of perceptual organization
- attention
- expectations

Laws of perceptual organization

- Pragnanz - good figure
 - Stimuli should be interpreted so that the resulting form is ASAP
- Similarity
 - Similar shapes, orientations, colors should be grouped together
- Proximity
 - Close things should be grouped together
- Common fate
 - Motion in the same direction should be grouped together
- Meaningfulness and familiarity
 - Groups should look familiar

- Good figure
 - form asap

- Similarity
 - group elements that are similar together
Proximity & Similarity

group elements that are proximal

weaker grouping principles—group parallel and symmetric elements together

Common fate:
- group elements moving in the same direction together

Figure-ground Heuristics
- Figure is more “thing-like” and memorable
- Figure is further front
- Figure “owns” the contour
- Ground is “unformed”

Determinants of F-G separation
- symmetry - figures are often symmetric
- convexity - figures bulge out
- area - figures usually smaller
- orientation - horizontal and vertical
- meaning - figures have meaning (can sometimes be recognized)

Problem - quantifying these rules …..Modern Gestaltists

Quantify - perceptual
- What stimulus properties are responsible for grouping?
- How does grouping affect access of information from displays?

Quantify - visual cognitive - objects
- Treisman (80’s)
 - Preattentive and attentive processes
- Marr (82)
 - Represent in object-centered coordinates - 3D representation
- Biederman (86)
 - Can’t really do it...but can approximate it with intelligent image analysis
- Bülthoff, Edelman, Poggio (90’s)
 - Can’t do this at all - and you don’t really need to
• Treisman & Gelade (82) - feature integration theory

I. Preattentive processing

• primitives, features
 – "words in the language of vision"
 – Unbound to location

• tests of preattentive processing
 – "pop-out" for "features"
 – visual search for features (color, etc)
 » parallel with number of distracting items
 » independent access
 – Illusory conjunctions
 » red triangle - blue square - green circle

II. Focused Attention

• Attention
 – "glue" with which features are bound into objects
 – bound to location
 – Objects = conjunctions of features

• tests of attentive processing
 – No "pop-out"
 – visual search for conjunctions of features red square
 » serial with number of distracting items (RS RT)
 » Co-dependent access

Object and Shape Recognition Theories

• Direct analysis of shapes
 – Problems
 • Viewing angle
 • Photometric problems - illumination, viewpoint, shadows, highlights
 • Object setting - isolation, occlusion
 • Rigid, non-rigid - animated

• Shape invariants
 – Properties of shape common to all views
 – Feature list that specifies object
 • Good - some success in limited situations
 • Bad - not generally applicable

Object and Shape Recognition Theories (continued)

• Structural description
 • Find parts
 • Identify parts
 • Describe structural relations among the parts
 – examples - Bottom-up Approaches
 • Feature hierarchies Pandemonium model (Selfridge,50)
 • Generalized Comes as Parts - (Marr, 82)
 – Raw primal sketch
 – 2D/3D sketch
 – 3D object centered representations
Object and Shape Recognition Theories (continued)

- Recognition by components (Biederman, 86)
 - Geons (about 50)
 - Least changeable with viewpoint
 - Maximize image features that generalize
 - Psychological evidence
 - Accidental and non-accidental views

Object and Shape Recognition Theories (continued)

- Image-based models (Poggio & Edelman, 91)
 - 2D image analysis
 - Store multiple views
 - Interpolate in image space
 - Special or canonical views

- Alignment models (Ullman 90’s)
 - Within a category - solve correspondence
 - Align to a “special” view
 - Transform from 2D to 3D
 - Match