Touch Physiology

• Touch receptors:
 • mechanoreceptors
 • sensory receptors responsive to mechanical stimulation (pressure, vibration)
 • embedded in “skin”
 • 1.8m²
 • 4 kg
 • embedded on
 • outer layer (epidermis) and
 • underlying layer (dermis)

The Four Types of Mechanoreceptors

• 3 attributes of touch receptors:
 1. type of stimulation (mechano, thermo, noci)
 2. size of the receptive field (large/small)
 3. rate of adaptation (fast/slow)

Introduction

• proprioception (“self perception”):
 • perception mediated by kinesthetic and vestibular receptors
 • kinesthesia - arise from joint, muscles, tendons
 • proprioception - vestibular senses
 • somatosensation:
 • a collective term for all sensory signals from the body

Touch

• touch physiology
• tactile sensitivity and acuity
• haptic perception

1.8m²
4 kg
1.8m²
4 kg
The Four Types of Mechanoreceptors

- Tactile receptors (mechanoreceptors):
 - respond to mechanical stimulation or pressure
 - Meissner corpuscles
 - Merkel cell neurite complexes
 - Pacinian corpuscles
 - Ruffini endings

Touch Physiology (cont’d)

- Meissner corpuscles (epidemis-dermis junction)
 - Fast adapting, small receptive fields
- Merkel cell neurite complexes (epidemis-dermis junction)
 - Slow adapting, small receptive field
- Pacinian corpuscles (subcutis)
 - Fast adapting, large receptive field
- Ruffini endings (dermis)
 - Slow adapting, large receptive fields

Touch Physiology (cont’d)

- Merkel cell neurite complexes SA I
 - Fine spatial detail - texture-Braille
- Ruffini endings SA II
 - Sustained downward pressure - grasp
- Meissner corpuscles FA I
 - Low frequency vibrations
- Pacinian corpuscles (subcutis) FA II
 - High frequency vibrations - mosquitos

TABLE 12.1 Response characteristics of the four mechanoreceptor populations

<table>
<thead>
<tr>
<th>ADAPTATION RATE</th>
<th>SIZE OF RECEPTIVE FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>FA I (Meissner)</td>
</tr>
<tr>
<td>Slow</td>
<td>SA I (Merkel)</td>
</tr>
<tr>
<td>FA II (Pacinian)</td>
<td>SA II (Ruffini)</td>
</tr>
</tbody>
</table>

FA I = fast-adapting type I, FA II = fast-adapting type II, SA I = slow-adapting type I, and SA II = slow-adapting type II. The receptor ending associated with each type is shown in parentheses.

Touch Physiology (cont’d)

- Each receptor:
 - different range of responsiveness
Proposed Sensitivity Ranges of Mechanoreceptors

- kinesthetic receptors:
 - limbs positions
 - limb motions

- Muscle spindles
 - embedded in main (extrafusal) muscle fibers contains inner (intrafusal fibers)
 - detect angle formed by limb at a joint

Spindles:
- rate at which the muscle fibers change in length
- receptors in tendons
 - provide signals about tension in muscles attached to tendons
- receptors in joints
 - react when joint is bent to an extreme angle

Thermoreceptors:
- receptors that signal changes in skin temperature
- two distinct populations of thermoreceptors:
 - warmth fibers
 - cold fibers
- body regulation of internal temperature
- thermoreceptors respond with contact
 - of object warmer or colder than skin
12.5 Thermal receptivity functions

• Nociceptors (pain receptors):
 – sensory receptors that detect noxious stimulation that causes damage or potential damage to skin
 – Two groups of nociceptors:
 • A-delta fibers
 • C fibers

Touch Physiology (cont’d)

• Two groups of nociceptors:
 – A-delta fibers
 • Strong pressure or heat
 • myelinated
 – C fibers
 • pressure, heat, cold, noxious chemicals
 • unmyelinated

Touch Physiology (cont’d)

• Two stages of pain (Price, 1977)
 – quick sharp burst
 • A-delta fibers
 – throbbing
 • C fibers

Touch Physiology (cont’d)

• Benefit of pain perception:
 – sensing dangerous objects

 – Case of “Miss C”:
 • born with insensitivity to pain
 • could not protect herself
 • died at 29 yrs. of age

Touch Physiology (cont’d)

• Skin to Brain
• Touch sensations travel as far as 2 meters to get from skin and muscles of feet to brain!
 – information passes through spinal cord
 – axons of various tactile receptors combine into single nerve trunks
 – nerve trunks from different areas of body
 – from spinal cord:
 • Two major pathways:
 – spinothalamic (slower);
 – dorsal-column-medial-lemniscal (faster)

– Spinothalamic pathway
 • synapses within spinal cord
 • temperature and pain
– DCML:
 • synapse in medulla, near base of brain
 • pressure, vibration, joint and position sense

• Thereafter
 • then ventral posterior nucleus of thalamus
 • then somatosensory area 1 (S1)
 • somatosensory area 2 (S2)

• Touch sensations
 – somatotopically represented
 • Adjacent areas on skin:
 • Connected to adjacent areas in brain,
 – The “homunculus”
 – brain contains several sensory maps of body,
 different sub-areas of S1
 – and secondary areas as well
• Wilder Penfield (1950’s)
 – awake brain surgery
 – stimulated somatosensory cortex
 – discovered “homonculus”
• analogy to vision
 – cortical magnification
 – somatotopic organization
 – multiple maps of the body in S1 and S2

• Phantom limb:
 – perceived sensation from amputated limb
 – parts of brain represent “missing limbs”
 • altered connections not represented
 • activity in brain areas signal “missing limb”
 • Ramachandran example
 – face-hand

12.9 Phantom limbs may appear on the face and stump

• Ramachandran
 – amputees feeling sensations in missing hands when face is touched
 – hand and arm areas in cortex “invaded” by the face area
The Sensory Homunculus (Part 2)

Touch Physiology (cont’d)

• Pain:
 – pain sensations triggered by nociceptors
 – responses to noxious stimuli moderated by:
 • anticipation, religious belief, prior experience,
 watching others respond, excitement
 – Example:
 • wounded soldier who does not feel pain
 • endogenous opiates

• Analgesia:
 – decreases pain during conscious experience
 – endogenous opiates
 • chemicals released in body to block release or
 uptake of neurotransmitters transmitting pain
 sensations to brain
 • produced in pituitary gland and hypothalamus
 – externally produced substances similar:
 • morphine, heroin, codeine

• Nociceptor types:
 – Nerve fiber (not ending) differences
 • A-delta (A-Δ)
 – mylinated - strong pressure or heat
 • C fibers
 – unmylinated
 – pressure, heat, noxious chemicals

• Gate control theory of pain:
 – pain system modulated by efferents
 – feedback circuit located in
 • substantia gelatinosa
 – dorsal horn of spinal cord
 – gate neurons block pain transmission
 • activated by extreme pressure, cold, other
 noxious stimulation applied to another site
 distant from source of pain
Touch Physiology (cont'd)

- pain sensitization:
 - "nociceptive" pain
 - impending/ongoing damage to body's tissue
 - hyperalgesia
 - increased sensitivity after damage
 - neuropathic pain
 - damage to or dysfunction of nervous system
 - allodynia - sensory fibers in skin "become" pain inducers

- Cognitive aspects of pain
 - subjective experience, two components:
 - sensation of pain
 - emotion response
 - Areas S1 and S2:
 - sensory aspects of pain
 - anterior cingulate
 - areas of brain that might correspond to more cognitive aspects of painful experiences

- Cognitive aspects of pain
 - subject experience, two components:
 - sensation of pain
 - emotion response
 - Areas S1 and S2:
 - sensory aspects of pain
 - anterior cingulate
 - areas of brain that might correspond to more cognitive aspects of painful experiences

- anterior cingulate cortex responded differentially to two hypnotic suggestions, by increasing or decreasing its activity
 - hypnosis experiment
 - lukewarm and hot water:
 - suggestion of "unpleasantness"
 - S1 not affected by hypnosis
 - anterior cingulate activated differentially

- Prefrontal cortex
 - secondary pain effect:
 - emotional response associated with long-term suffering, (e.g., cancer patients undergoing chemotherapy, associated with prefrontal cortex)
 - memory of pain....

Psychophysics of Touch
Tactile Sensitivity and Acuity

- How sensitive are we to mechanical pressure?
 - Max von Frey (Nineteenth century) developed an elegant way to measure this, using carefully calibrated stimuli:
 - horse and human hairs
 - modern researchers:
 - use nylon monofilaments of varying diameters

Sensitivity to Pressure

Tactile Sensitivity and Acuity (cont’d)

- How finely can we resolve spatial details?
 - two-point touch threshold:
 - minimum distance at which two stimuli (e.g., two simultaneous touches) are just perceptible as separate

Two-Point Threshold on the Hand

Tactile Sensitivity and Acuity (cont’d)

- Correspondence between
 - pattern of two-point thresholds across body
 - cortical magnification in sensory homunculus

- factors
 - receptor density at the skin,
 - receptive field size
Tactile Sensitivity and Acuity (cont'd)

- How finely can we resolve temporal details?
 - Sound pressure changes of
 - low-frequency sounds
 - can translate into vibratory skin pressure changes
 - higher-frequency
 - notes cannot be felt

Minimally Detectable Displacement

FA II

Haptic Perception

- Haptic perception:
 - sensory knowledge derived from sensory receptors in skin, muscles, tendons, and joints
 - usually involves active exploration
 - think Gibson!

Haptic Perception (cont'd)

- action for perception:
 - exploratory procedure:
 - stereotyped hand movement pattern used to contact objects in order to perceive their properties
 - optimal for obtaining
 - precise details about one or two specific properties,
 - (e.g., roughness -> lateral motion)

Exploratory Procedures

- the "What" system of touch:
 - geometric properties of objects:
 - most important for visual recognition
 - Klatzky, Lederman, & Mtzger (1985)
 - Recognition of common objects by touch
 - easy- fork, brush, paperclip
Objects Easy to Recognize by Vision, but not by Touch

Haptic Perception (cont’d)

• haptic “search tasks” (Luderman & Klatsky, 1997)
 – like vision…
 • preattentive pop-out properties

Feature Detection

Haptic Perception (cont’d)

• Perceiving patterns with the skin:
 – Braille alphabet:
 • raised dots
 – Loomis (1990):
 • touch acts like blurred vision when the fingertips explores a raised pattern
 • Confusion errors similar
 – in touch and blurred vision

Character Recognition Sets Used by Loomis

Haptic Perception (cont’d)

• tactile agnosia:
 – the inability to identify objects by touch
 – example:
 • patient (Reed and Caselli, 1994)
 – Tactile agnosia in right hand
 – Left parietal lesion
 – BUT - other mecho-tasks spared
 » weight comparisons, roughness detection
The "Where" system of touch:
- frame of reference:
 - coordinate system to define locations in space
- egocenter:
 - center of a reference frame used to represent locations relative to the body

Interactions between touch and other modalities:
- experiments that study competitions between sensory modalities (Spence, Nichols & Driver, 2000)
- Attention
 - visual or auditory cuing to a tactile stimulation
 - valid cues speed detection
 - invalid cues slow detection

Interactions between touch and other modalities:
- Integration (Lederman, Thorne & Jones, 1986)
 - Co-dependence between visual and tactile
 - sandpaper
 » judgments of "closely packed elements" relied more on vision
 » roughness judgments more on tactile
• Touch and vision integration
 – dependent on reliability (Ernst and Banks, 2002)
 • Informativeness of cue considered in a weighted average of the information

Haptic Perception (cont’d)

• Virtual haptic environments:
 – Video games
 • Ultimate tactile visual integration
 – Tadoma
 • method of speech perception for deaf and blind people by touching the face and lips

The Tadoma Method