\qquad

EXAMINATION I

Show your work!

Problem 1

The following series is not a power series, but you can determine exactly where it converges:

$$
\sum_{n=0}^{\infty} \frac{(n-1) 3^{n}}{\left(n^{2}-1\right)(x+1)^{n}}
$$

Of course we use the ratio test!:

$$
\left|\frac{n 3^{n+1}}{\left[(n+1)^{2}-1\right](x+1)^{n+1}} \cdot \frac{\left(n^{2}-1\right)(x+1)^{n}}{(n-1) 3^{n}}\right|=\frac{n}{n-1} \cdot \frac{n^{2}-1}{n^{2}+2 n} \cdot \frac{3}{|x+1|}
$$

Taking the limit as $n \rightarrow \infty$, the n fractions all tend to one so the limit is: $\frac{3}{|x+1|}$. For convergence by this test we must have that ratio less than one, or $|x+1|>3$. Since $|x+1|=|x-(-1)|$ is the distance from $x=-1$, we have convergence for $x>2$ and for $x<-4$.

Finally, the end-points. At $x=2$, the series is $\sum \frac{n-1}{n^{2}-1} \approx \sum \frac{1}{n}$ which diverges (p-series with $p=1$). At $x=-4$, the series is $\sum(-1)^{n} \frac{n-1}{n^{2}-1} \approx \sum(-1)^{n} \frac{1}{n}$ which converges (alternating series test).

Thus the series converges exactly for $x>2$ and $x \leq-4$ and diverges everywhere else (i.e., $-4<x \leq 2$).

Problem 2

Derive the Taylor series expansion for the function $f(x)=1 / x$ which has its interval of convergence centered at $x=1$ (giving the general term and stating exactly where it does converge):

n	$f^{(n)}(x)$	$f^{(n)}(1)$	$f^{(n)}(1) / n!$
0	$1 / x$	1	1
1	$-1 / x^{2}$	-1	-1
2	$2 / x^{3}$	2	1
3	$-3 \cdot 2 / x^{4}$	$-3 \cdot 2$	-1
4	$4 \cdot 3 \cdot 2 / x^{5}$	$4 \cdot 3 \cdot 2$	1
\vdots	\vdots	\vdots	\vdots

By now it should be obvious that the coefficients are ± 1. In order to be "centered" at $x=1$ the terms must be powers of $(x-1)$. Thus

$$
\frac{1}{x}=\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}
$$

BTW: Note that $\frac{1}{x}=\frac{1}{1+(x-1)}=\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}$ from one of our most inportant well-known formulae!

Problem 3

Design a cylindrical can (with a lid and bottom) to contain 16π cubic units of liquid, using the minimum amount of metal.

The quantity we are trying to maximize is $M=2 \pi r^{2}+2 \pi r h$ with the constraint that $V=\pi r^{2} h=16 \pi$. Of course we use a Lagrange Multiplier:

$$
\mathcal{L}=2 \pi r^{2}+2 \pi r h+\lambda\left(\pi r^{2} h\right)
$$

Differentiating we get the two equations:

$$
\begin{gathered}
\partial \mathcal{L} / \partial r=4 \pi r+2 \pi h+\lambda(2 \pi r h)=0 \\
\partial \mathcal{L} / \partial h=2 \pi r+\lambda\left(\pi r^{2}\right)=0
\end{gathered}
$$

These, together with the constraint, give us 3 equations in the 3 unknowns - as expected. Since r cannot be zero, the second equation may be solved for λ obtaining $\lambda=(-2 \pi r) /\left(\pi r^{2}\right)=-2 / r$. Substututing into the first equations yields:

$$
4 \pi r+2 \pi h-\frac{2}{r}(2 \pi r h)=\pi(4 r+2 h-4 h)=0 \Rightarrow h=2 r
$$

Now the contraint equations gives:

$$
V=\pi r^{2} h=\pi r^{2} \cdot 2 r=2 \pi r^{3}=16 \pi \Rightarrow \mathrm{r}=2 \Rightarrow \mathrm{~h}=4
$$

BTW: That means the height equals the diameter. It's the same problem as maximizing the volume of a can with a fixed amount of material!

Problem 4

Find the moment of inertia with respect to the origin (center) of a spherical shell whose inner radius is 1 and whose outer radius is 2 , assuming constant density.

All these spheres tell us to use spherical coordinates and the square of the distance from the origin is r^{2} immediately! We must remember that the element of volume is $r^{2} \sin \theta d r d \theta d \phi$. The hard question is the limits of the integrals. Certainly, r goes from 1 to 2 is almost forced on us by the statement of the problem. Next, ϕ ("longitude") goes from 0 to 2π in order to cover the entire spheres. What about θ ? Remember θ is the "co-latitude" or "polar latitude" so it goes from $\theta=0$ at the "north pole" down only to $\theta=\pi$ at the "south pole", not to 2π. Therefore

$$
\begin{gathered}
I_{\text {origin }}=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{2} r^{2} \cdot r^{2} \sin \theta d r d \theta d \phi \\
I_{\text {origin }}=2 \pi \cdot[-\cos \theta]_{0}^{\pi} \cdot \frac{1}{5} \cdot\left[r^{5}\right]_{1}^{2}=2 \pi(1+1) \frac{1}{5}(32-1)=\underline{124 \pi / 5}
\end{gathered}
$$

Problem 5

Find the volume of the solid bounded by the graphs of the equations $z=\sqrt{x^{2}+y^{2}}$ and $x^{2}+y^{2}+z^{2}=9$.

When we draw the graphs, we see that $z=\sqrt{x^{2}+y^{2}}$ is that part of the usual (ice cream) cone $z^{2}=x^{2}+y^{2}$ above the $x y$-plane. Most importantly, the angle it makes with the z-axis is $45^{\circ}=\pi / 4$. The other equation is obviously a sphere of radius 3 around the origin. [Note: This is not a surface area problem so we don't have to figure out where the cone meets the sphere so we can tell what area in the $x y$-plane is covered.] The volume element in spherical coordinates is $r^{2} \sin \theta d r d \theta d \phi$ so all we need is what are, in fact, the limits?

The "longitude" (ϕ) goes from 0 to 2π as usual to go all around the sphere. The distance from the origin (r) is clearly going from the center of the sphere $(r=0)$ to the outer edge $(r=3)$. The hard question (as in Problem 4) is what are the limits for θ ? Remember θ is the "co-latitude" or "polar latitude" so it goes from $\theta=0$ at the "north pole" down only to $\theta=\pi / 4$ as mentioned above. Now we can set up the integrals:
$V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{3} r^{2} \sin \theta d r d \theta d \phi=2 \pi \cdot[-\cos \theta]_{0}^{\pi / 4} \cdot\left[r^{3} / 3\right]_{0}^{3}=2 \pi \cdot(1-1 / \sqrt{2})$.
Thus

$$
V=\underline{9 \pi(2-\sqrt{2})}
$$

Problem 6

Find the surface area of that part of the paraboloid $z=1+x^{2}+y^{2}$ which is inside the cylinder $x^{2}+y^{2}=1$.

Immediately, $\phi=z-x^{2}-y^{2}-1 \Rightarrow \phi_{x}=-2 x, \phi_{y}=-2 y, \phi_{z}=1$ so

$$
\sec \gamma=\sqrt{4 x^{2}+4 y^{2}+1}
$$

The surface is over a circle so we will use polar coordinates:

$$
S=\iint \sec \gamma d A=\iint \sqrt{4\left(x^{2}+y^{2}\right)+1} d x d y=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{4 r^{2}+1} r d r d \theta
$$

Integrating:

$$
S=2 \pi \cdot\left[\left(4 r^{2}+1\right)^{3 / 2} \cdot \frac{2}{3} \cdot \frac{1}{8}\right]_{0}^{1}=\underline{\pi\left(5^{3 / 2}-1\right) / 6}
$$

BTW: Notice that you cannot replace $x^{2}+y^{2}$ by 1 because that is just the boundary of the cylinder in the $x y$-plane and you must use the area inside it. You could replace $x^{2}+y^{2}$ by $z-1$ from the surface of the paraboloid, but then you have to go back to x and y for the integral.

End of Test

Think of all the other material we couldn't find time for on this test! Change of variables with Jacobians, Max-Min problems on boundaries, convergence of lots of types of series, applications of power series, etc. You will need all this material in later courses.

