
ENGR 3300 NAME

EXAMINATION I

Show your work!

Problem 1

The following series is not a power series, but you can determine exactly where it
converges:

∞∑
n=0

(n− 1) 3n

(n2 − 1)(x+ 1)n

Of course we use the ratio test!:∣∣∣∣∣ n 3n+1

[(n+ 1)2 − 1](x+ 1)n+1
· (n2 − 1)(x+ 1)n

(n− 1) 3n

∣∣∣∣∣ =
n

n− 1
· n

2 − 1

n2 + 2n
· 3

|x+ 1|

Taking the limit as n→∞, the n fractions all tend to one so the limit is: 3
|x+1| . For

convergence by this test we must have that ratio less than one, or |x+ 1| > 3. Since
|x+ 1| = |x− (−1)| is the distance from x = −1, we have convergence for x > 2 and
for x < −4.

Finally, the end-points. At x = 2, the series is
∑ n−1

n2−1
≈ ∑ 1

n
which diverges (p-series

with p = 1). At x = −4, the series is
∑

(−1)n n−1
n2−1

≈ ∑
(−1)n 1

n
which converges

(alternating series test).

Thus the series converges exactly for x > 2 and x ≤ −4 and diverges everywhere

else (i.e., −4 < x ≤ 2 ).
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Derive the Taylor series expansion for the function f(x) = 1/x which has its interval
of convergence centered at x = 1 (giving the general term and stating exactly where
it does converge):

n f (n)(x) f (n)(1) f (n)(1)/n!

0 1/x 1 1
1 −1/x2 −1 −1
2 2/x3 2 1
3 −3 · 2/x4 −3 · 2 −1
4 4 · 3 · 2/x5 4 · 3 · 2 1
...

...
...

...

By now it should be obvious that the coefficients are ±1. In order to be “centered”
at x = 1 the terms must be powers of (x− 1). Thus

1

x
=
∞∑
n=0

(−1)n(x− 1)n

BTW: Note that 1
x

= 1
1+(x−1)

=
∑∞

n=0
(−1)n(x− 1)n from one of our most inportant well-known formulae!
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Design a cylindrical can (with a lid and bottom) to contain 16π cubic units of liquid,
using the minimum amount of metal.

The quantity we are trying to maximize is M = 2πr2 + 2πrh with the constraint
that V = πr2h = 16π. Of course we use a Lagrange Multiplier:

L = 2πr2 + 2πrh+ λ(πr2h)

Differentiating we get the two equations:

∂L/∂r = 4πr + 2πh+ λ(2πrh) = 0

∂L/∂h = 2πr + λ(πr2) = 0

These, together with the constraint, give us 3 equations in the 3 unknowns - as
expected. Since r cannot be zero, the second equation may be solved for λ obtaining
λ = (−2πr)/(πr2) = −2/r. Substututing into the first equations yields:

4πr + 2πh− 2

r
(2πrh) = π(4r + 2h− 4h) = 0⇒ h = 2r

Now the contraint equations gives:

V = πr2h = πr2 · 2r = 2πr3 = 16π ⇒ r=2 ⇒ h=4

BTW: That means the height equals the diameter. It’s the same problem as maximizing the volume of a can with a

fixed amount of material!
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Find the moment of inertia with respect to the origin (center) of a spherical shell
whose inner radius is 1 and whose outer radius is 2, assuming constant density.

All these spheres tell us to use spherical coordinates and the square of the distance
from the origin is r2 immediately! We must remember that the element of volume
is r2 sin θ dr dθ dφ. The hard question is the limits of the integrals. Certainly, r
goes from 1 to 2 is almost forced on us by the statement of the problem. Next, φ
(“longitude”) goes from 0 to 2π in order to cover the entire spheres. What about
θ? Remember θ is the “co-latitude” or “polar latitude” so it goes from θ = 0 at the
“north pole” down only to θ = π at the “south pole”, not to 2π. Therefore

Iorigin =
∫ 2π

0

∫ π

0

∫ 2

1
r2 · r2 sinθ dr dθ dφ

Iorigin = 2π · [− cos θ]π0 ·
1

5
·
[
r5
]2

1
= 2π(1 + 1)

1

5
(32− 1) = 124π/5
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Find the volume of the solid bounded by the graphs of the equations z =
√
x2 + y2

and x2 + y2 + z2 = 9.

When we draw the graphs, we see that z =
√
x2 + y2 is that part of the usual (ice

cream) cone z2 = x2 + y2 above the xy-plane. Most importantly, the angle it makes
with the z-axis is 45o = π/4. The other equation is obviously a sphere of radius 3
around the origin. [Note: This is not a surface area problem so we don’t have to
figure out where the cone meets the sphere so we can tell what area in the xy-plane
is covered.] The volume element in spherical coordinates is r2 sin θ dr dθ dφ so all we
need is what are, in fact, the limits?

The “longitude” (φ) goes from 0 to 2π as usual to go all around the sphere. The
distance from the origin (r) is clearly going from the center of the sphere (r = 0) to
the outer edge (r = 3). The hard question (as in Problem 4) is what are the limits
for θ? Remember θ is the “co-latitude” or “polar latitude” so it goes from θ = 0 at
the “north pole” down only to θ = π/4 as mentioned above. Now we can set up the
integrals:

V =
∫ 2π

0

∫ π/4

0

∫ 3

0
r2 sin θ dr dθ dφ = 2π · [− cos θ]π/40 ·

[
r3/3

]3
0

= 2π ·
(
1− 1/

√
2
)
· (9)

Thus
V = 9π(2−

√
2)
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Find the surface area of that part of the paraboloid z = 1 + x2 + y2 which is inside
the cylinder x2 + y2 = 1.

Immediately, φ = z − x2 − y2 − 1⇒ φx = −2x, φy = −2y, φz = 1 so

sec γ =
√

4x2 + 4y2 + 1

The surface is over a circle so we will use polar coordinates:

S =
∫ ∫

sec γ dA =
∫ ∫ √

4(x2 + y2) + 1 dx dy =
∫ 2π

0

∫ 1

0

√
4r2 + 1 r dr dθ

Integrating:

S = 2π ·
[
(4r2 + 1)3/2 · 2

3
· 1

8

]1

0
= π

(
53/2 − 1

)
/6

BTW: Notice that you cannot replace x2 + y2 by 1 because that is just the boundary of the cylinder in the xy-plane

and you must use the area inside it. You could replace x2 + y2 by z− 1 from the surface of the paraboloid, but then

you have to go back to x and y for the integral.

End of Test

Think of all the other material we couldn’t find time for on this test! Change of variables with Jacobians, Max-Min

problems on boundaries, convergence of lots of types of series, applications of power series, etc. You will need all

this material in later courses.
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