$1 = 0 + 1$

$\mathbb{Z}[\sqrt{-1}]$ is a Euclidean Domain: Gaussian integers.

1 times anything = same thing

Any power you like.

Divisor of anything you like. $1 = 1^2 = 1^3 = \ldots$

Can create all natural numbers by addition. $1 = 3^2 - 2^3$.

Hexagonal ... Special case for many things.

$1! + 1$ is prime

Unity; the empty product. $= 1$.

Neither prime nor composite.

The number of people in the room when you are alone.

The only number (other than 0) which is triangular and a

$1 = 1 \times 1$ $1 + 1$ is prime. $2^2 + 1$ is prime.

Hegyle number: $\mathbb{Z}(\sqrt{-1})$ has unique factorization.

Bell numbers

Motzkin number

Pandorovan number

Sylvester number

Catalan number

Star number

Woodall number

Euler number

Cullen number: $1 = 0 \cdot 2^0 + 1$

Lucas

Tetrahedral

$R(\sqrt{1 - 4})$ UFD (unique factorization domain)