Grace Series Talk:
The Path and the Features
-- Prof. I-Ling Yen
Features

- Big data
- Feature vector
- Label
- Association
 - Feature values leads to the label value
Your feature values derive your path
Preferences and Talents

- Features: Preferences + talents \Rightarrow Career path
 - Intertwined

- My academic path
 - BS: Physics, National TsingHua University, Taiwan
 - Career after graduation
 - Teacher, research assistant (repetitive tasks)
 - MS: CS, University of Houston
 - Talents/Preferences + Job market
 - Job choice: only if there is research
 - PhD: CS, University of Houston
 - Talents/Preferences + Job market + Job prospect (repetitive tasks?)
 - Assistant Prof. in Michigan State University
 - Associate and Full Prof. in UTD, since 1997
Research

Features

- Problem solving
- Creativity
 - Dijkstra: Self stabilization, program verification, algorithms
 - The framework of theory of computation, computability, decidability, NP, P, … and the proof mechanism
- Perfectionism
 - Knuth: S in Latex
 - Steve Jobs
- Benefit society?
Research

➢ My research Path

♦ Ionization simulation (Tsinghua)
 ▪ For solar cell design, study the effect of deep or shallow ion implantation

♦ Dependability (Houston)
 ▪ Fault tolerance, consistency, …
 ▪ self-organizing systems
 ▪ Inherent fault tolerance
Research

My research path

Security (UTD)

- Homomorphic encryption and secret sharing
 - \(X + Y = Z; \quad E(X) \oplus E(Y) = E(Z) \)

- System security
 - Key management at the low level
 - Single sign on

- Information flow control
 - Access control: within a domain
 - \(A: x; \quad B: z = x + y; \quad C: v = u \times z; \quad d: \text{read } v \)
 - Who should C check with?
 - How to know that \(v \) depends on \(x, y, u \) from \(A, B, C \)?
 - How to know how much of \(x \) is in \(v \)?
 - How to define AC/IFC policies?
 - How to assure that the parties follow the AC/IFC policies?
 - How to build an efficient AC/IFC system?
Research

➢ My research path
 ♦ Benefit the society?
 ♦ SPW
 ▪ Rescue mission
 • E.g., search for survivors
 ▪ Field SPW
 • E.g., automated lawn care
 ▪ Elderly care
 • Fall prevention
 • Daily life management
SPW

- **IoT, CPS ⇒ smart physical world (SPW)**
 - CPS involves more actuators and has complex control
 - Research focuses on the control and interactions with the PTs
 - IoT research currently is more like sensor network with simple control of some actuators
 - Some research considers big data, which mainly focuses on sensor data
 - The difference is fuzzy

- **SPW toward a better human life**
 - Use a new terminology to avoid bias towards either
 - **Desired SPW:**
 - Consider sensors and actuators
 - Use AI techniques to automate various tasks in our daily lives
 - Also use HI
SPW

Sensor analysis for Situation recognition → Situation facts → Reactive action Reasoning

Raw sensor input about the world

Evaluation & Feedback

Control tasks: Service Composition Reasoning, Execution (to achieve the task)

Machine Learning
Big Data Analysis
Semantic Computing

Start

Automated Composition Reasoning, Semantic Computing, Learning
SPW

Techniques for an intelligent SPW

- Scenario analysis, reaction decision making

Knowledge-base based approaches
- Establish rule bases for situation analysis, reaction decision making
 - Fuzzy rule base, probabilistic reasoning, etc.

Data mining based approaches
- Build a repository to store a large number of real world scenarios
 - For scenarios and reasoning results for situation analysis and reaction decision making
- Mine the repository for similar cases and the associated solutions
- Evaluate them and make a decision

Service composition reasoning
- Define an extended service model for PTs, PT-SOA
- Facilitate composition reasoning based on PT-SOA
SPW Intelligence

- Techniques for an intelligent SPW
 - Current AI and machine learning techniques may not be sufficient to achieve some tasks
 - Human is also a precious resource in SPW
 - Use human intelligence (HI) to assist with the tasks
 - \Rightarrow AI + HI
 - Gaming based crowd sourcing
 - Many young gamers are very skillful at control tasks
 - Can we use their skills to help with real world tasks?
 - Help is provided in the gaming world (virtual), but being mapped to the real world tasks
 - Rewards are given in the gaming world for successfully accomplishing the real world tasks
AI + HI

Potential issues

♦ Skill
 - For some tasks, HI needs to be trained to help
 - When help with vacuuming, knock down and break precious objects

♦ Security
 - Someone may purposely mess up the task
 - ...

♦ Privacy
 - From some tasks, some private information may be released
 - ...

♦ Liability
AI + HI

Potential issues

♦ Skill
- Before assigning a real world task, get trained
 - By simulated tasks and past tasks
- Combine AI and HI to ensure the success of the task

♦ Security
- Use trust management of people
 - Associate with real world identities (identities should be protected) and use virtual and real world information to help with trust analysis
- Mix simulated & real tasks, make them non-distinguishable
- Use multiple human resources for fault tolerance
 - May have timeliness issues

♦ Privacy
- Intelligently map real world to virtual world
AI + HI

Image analysis for Situation recognition → Situation facts → Reactive action Reasoning

Situation DB → Raw sensor input about the world

Scenario DB

Reactive actions (tasks)

Evaluation & Feedback

Control tasks → Service Composition Reasoning, Execution (to achieve the task)
Your feature values derive your career path and, hopefully, it benefits society