MATH 2413 Fall 2012, Lectures 23-25

Qingwen Hu

Department of Mathematical Sciences
The University of Texas at Dallas
Richardson, Texas
qingwen@utdallas.edu

October, 2012
Outline of Sections 3.10–4.1

1. Linear approximation; linearization; Tangent line at a given point;
2. Error of approximation;
3. Differentials: $dy = f'(x)dx$ if $y = f(x)$ is differentiable.
4. Definitions of absolute maximum/minimum; local maximum/minimum;
5. Extreme value theorem: If f is continuous in a closed interval $[a, b]$, then f has abs. max and min.
6. Fermat’s Theorem: If f has a local max/min at c and $f'(c)$ exists, then $f'(c) = 0$;
7. Critical number; Another version of Fermat’s Theorem;
8. The closed interval method for abs max/min in a closed interval $[a, b]$.
Exercises:

1. Show that for every $a > 0$ the linear approximation $L(x)$ of $f(x) = \sqrt{x}$ at $x = a$ satisfies $f(x) \leq L(x)$ for every $x > 0$.

2. Consider $f(x) = \frac{\sin x}{x}$ on $[0, n\pi]$, $n \in \mathbb{N}$. How many local maxima/minima does f have?