MATH 2413 Fall 2012, Lectures 26-30

Qingwen Hu

Department of Mathematical Sciences The University of Texas at Dallas Richardson, Texas qingwen@utdallas.edu

November, 2012

-

Outline of Sections 4.2-4.5

- 1. Rolle's Theorem;
- 2. The Mean Value Theorem;
- 3. Increase/Decrease test;
- 4. First derivative test (for local max/min);
- 5. Concavity test.
- 6. Second derivative test (for local max/min);
- 7. Indeterminate forms $\frac{0}{0}$, $\frac{\infty}{\infty}$, $0 \cdot \infty$, ∞^0 , 1^{∞} .
- 8. L'Hospital's rule for indeterminate forms $\frac{0}{0}$, $\frac{\infty}{\infty}$.
- 9. Indeterminate product/difference/powers;
- 10. Slant asymptotes y = mx + b: $m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$, $b = \lim_{x \to \pm \infty} f(x) mx$.
 - 9. Curve sketching: A: Domain/ B: Intercepts/C: Symmetry/D: Asymptotes/E: Intervals of increase or decrease/F: local max and or min/G: Concavity.

Exercises:

- 1. Is it true that $f(x) = x^3 + \sin x$ has only one zero in [-1, 1]?
- 2. Let *f* be a continuous and differentiable function on [a, ,b]. Is it true that if $f(a) \cdot f(b) < 0$ and $f'(x) \neq 0$ for every $x \in (a, b)$, then there is a unique number $c \in [a, b]$ such that f(c) = 0? Hint: Use the Intermediate Value Theorem and Rolle's Theorem.
- 3. Let f(x) be a differentiable function with domain \mathbb{R} . If x = c is the unique solution of f'(x) = 0 and f''(x) > 0 for all $x \in \mathbb{R}$, is it true that f(c) is the unique minimum of f? Draw an exemplary graph and justify your answer.
- 4. Is it true that for every $n \in \mathbb{N}$, we have $\lim_{x \to +\infty} \frac{x^n}{e^x} = 0$? Hint: use L'Hospital's rule.
- 5. Is it true that for every $n \in \mathbb{N}$, we have $\lim_{x \to +\infty} \frac{(\ln x)^n}{x} = 0$? Hint: use L'Hospital's rule and mathematical induction.

・ロト ・日本 ・ヨト ・ヨト