English Language Learners: Language growth within structured/sheltered English immersion programs

Background

The language growth of English Language Learners

 (ELLs; Rojas \& Iglesias, under review)Modeled the language growth of 1,723 (Spanish-English) ELLs Modeled the language growth of 1,723 (Spanish--12,248 Narrative retell language samples:

- 6,516 Spanish; 5,732 English

Covariates: Gender; summer vacation
-Outcome measures: Mean length of utterance in words (MLUw); Number of different words (NDW)

Aims
Differences with respect to prototypical language trajectories Intra- and inter-individual differences
-Systematic relationship between initial status and growth

Growth curve trajectories: Overall sample

Purpose \& Method

What is the effect of program type on ELLs
language growth?
Structured/sheltered English immersion (SEI) programs involve all academic instruction in English
-Goal of SEI programs is to attain fluency in English Language growth of ELLs in SEI programs was contrasted with the language growth of "overall" ELLs across a variety of programs

Participants

Subset of ELL children from overall sample used in Rojas \& Iglesias (under review)
-ELLs enrolled in schools that offered SEI programs exclusively - 419 ELLs: 198 girls; 221 boys

2,924, 1,427 Spanish; 1,497 E samples:
497 English
Final growth curve models

Method (continued)

Growth curve modeling (GCM)
-Maximum likelihood estimation method to handle missing data and estimate fixed effects and variance components
-Academic semester served as time metric
-Centering relative to fall of kindergarten as initial status
-GCM testing to determine final GCMs for each outcome measure: Unconditional means model \rightarrow Unconditional growth models (linear, quadratic, and cubic; fixed and randomly varying slope configurations) \rightarrow Conditional growth models (gender and discontinuous time; gender x slope interactions) Goodness of fit indices (-2LL for nested models; BIC for non-nested models) and Pseudo- R^{2} statistics with X^{2} testing estimated and tested across models
Prototypical growth curve trajectories generated from final GCM parameter estimates

Growth curve trajectories: SEl programs vs. Overall sample

Summary

	Spanish		English	
	MLUw	NDW	MLUw	NDW
Linearity	Curvilinear	Curvilinear	Linear	Linear
Direction	Nonmonotonic	Nonmonotonic	Nonmonotonic	Nonmonotonic
Continuity	Continuous	Continuous	Discontinuous	Discontinuous
Gender	Girls outpace boys	Girls outpace boys	Girls outpace boys (spring)	Girls outpace boys (spring)
Summer vacation	n/a	n/a	Negative growth	Slower growth
Initial statusgrowth covariance	Positive (\uparrow initial status $=$ \uparrow growth)	No systematic relationship	Negative (\downarrow initial status = \uparrow growth)	Negative (\downarrow initial status = \uparrow growth)

ELLs' language growth in Spanish and English: SEI Programs

	Spanish		English	
	MLUw	NDW	MLUw	NDW
Linearity	Curvilinear	Curvilinear	Linear	Linear
Direction	Nonmonotonic	Nonmonotonic	Nonmonotonic	Nonmonotonic
Continuity	Continuous	Continuous	Discontinuous	Discontinuous
Gender	Girls outpace boys (K-fall)	Girls outpace boys	Girls outpace boys (fall)	Girls ~boys
Summer vacation	n/a	n/a	Negative growth	Near parallel growth
Initial statusgrowth covariance	No systematic relationship	No systematic relationship	Negative ($\uparrow \downarrow$ initial status $=$ \uparrow growth)	No systematic relationship

Conclusions \& Next steps

ELLs in SEI programs differed from overall sampl Based on systematic, academic instruction in English, some growth patterns were expected:
-Boys' MLUw- and NDW-Spanish slower than overall sample -Girls' NDW-Spanish slower than girls in overall sample -Girls' and boys' NDW-English faster than overall sample However, other growth patterns were unexpected: -Girls' MLUw-Spanish faster than overall sample -Girls' MLUw-English with similar growth rates to overall sample -Boys' MLUw-English slower than overall sample
Necessary to model bilingual programs
-Transitional bilingual education programs involve initial instruction in the native language, which gradually transitions to English instruction by teacher in order to use actual lane of inguage as a covariate of language growth

