Experimental Datasets

The Effect of Walking Incline and Speed on Human Leg Kinematics, Kinetics, and EMG

This dataset contains leg joint kinematics, kinetics, and EMG activity from an experimental protocol approved by the Institutional Review Board at the University of Texas at Dallas. Ten able-bodied subjects walked at steady speeds and inclines on a Bertec instrumented treadmill for one minute per trial. Each subject walked at every combination of the speeds 0.8 m/s, 1.0 m/s, and 1.2 m/s and inclines from -10 degrees to +10 degrees at 2.5 degree increments, for a total of 27 trials. During each trial, a 10-camera Vicon motion capture system recorded leg kinematics, while force plates in the Bertec treadmill recorded ground reaction forces, and a Delsys Trigno EMG system recorded muscle activation of the rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius. This data can be used to test many hypotheses and models of human locomotion at varying speeds and inclines. This kinematic data has been used to train a predictive model that represents gait kinematics as a continuous function of gait cycle percentage, speed, and incline. This kinematic data has been used to train a predictive model that represents gait kinematics as a continuous function of gait cycle percentage, incline, and speed in the article:
K. Embry, D. Villarreal, R. Macaluso, and R. Gregg, "Modeling the Kinematics of Human Locomotion over Continuously Varying Speeds and Inclines," IEEE Transactions on Neural Systems and Rehabilitation Engineering, PP(99), 2018.

Data from: A Perturbation Mechanism for Investigations of Phase-Dependent Behavior in Human Locomotion

The dataset contains sagittal-plane leg joint kinematics, ground reaction forces, and EMG activity from one stride starting at heel strike on the perturbation platform, which randomly moved the stance foot in the anterior or posterior direction. These perturbations effected a phase shift in the gait cycle without substantially deviating from the nominal kinematic orbits of the leg joints. Only the right leg of each subject was perturbed, but both legs' kinematics are recorded. This data can be used to test different hypotheses and models of human locomotor control.

Data from: Evidence for a Time-invariant Phase Variable in Human Ankle Control

The data contained herein includes kinetic and kinematic data acquired during walking trials, while a subject walked a across a walkway. A perturbation device was recessed into the walkway and randomly applied a two or five degree incline perturbation to the ankle as subjects walked across the platform. The perturbations occurred at one of four timing intervals, namely 100, 225, 350 and 475 ms following heel strike. During each trial, subject ankle angle and ground reaction force data were acquired, including location of the center of pressure for each subject.


MATLAB Code for Biped Walker Simulation

This MATLAB package contains a simulation of an autonomous biped walker. This walker has mass and dimensions proportions similar to that of a human. It models the physics of the system using 2nd order differential equations. The derivation of the equations in Mathematica are included. There is a set-point Proportional-Derivative control (i.e., joint impedance) that drives the joints of the biped so that it walks stably down a shallow slope. This software can be useful for researchers looking for simulating controllers for autonomous bipeds, prosthetic legs, and/or exoskeletons.

CAD Designs

Coming soon!