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ARTICLE

New evidence for Jurassic continental rifting in the northern Sanandaj Sirjan
Zone, western Iran: the Ghalaylan seamount, southwest Ghorveh
Hossein Azizi a, Fatemeh Nouria, Robert J. Sternb, Marie Azizic, Federico Luccid, Yoshihiro Asaharae,
Mohammad Hossein Zarinkoubf and Sun Lin Chungg,h

aMining Department, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran; bGeosciences Department, University of Texas at Dallas,
Richardson, TX, USA; cEarth Sciences Department, Faculty of Basic Sciences, University of Kurdistan, Sanandaj, Iran; dDipartimento di Scienze,
Università Roma Tre, Roma, Italy; eDepartment of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya
University, Nagoya, Japan; fDepartment of Geology, Faculty of Sciences, Birjand University, Birjand, Iran; gInstitute of Earth Sciences,
Academia Sinica, Taipai 11529, Taiwan; hDepartment of Geosciences, National Taiwan University, P.O. Box 13-318, Taipai 10617, Taiwan

ABSTRACT
We address the growing controversy about the tectonic setting in which Jurassic magmatism of Iran
occurred: arc or continental rift. In the Ghorveh area of the northern Sanandaj Sirjan zone (SaSZ), the
Ghalayanmetabasites are interlayeredwithmarble and schist and locally cut by acidic dikes. Zircon U-Pb
dating of the metabasitic rocks shows that these crystallized at ca. 145–144 Ma ago in the Late Jurassic
(Tithonian). This complexwasmetamorphosed in the lower greenschist facies, however, someprotolithic
structures such as pillow lava andprimaryminerals are preserved. Themetabasites are tholeiiteswith low
SiO2 (45.6–50.5 wt.%), moderate Al2O3 (11.3–17.0 wt.%), and high TiO2 (0.7–2.9 wt.%) and Fe2O3 (9.4–
14.1 wt.%). The Ghalayan metabasites are enriched in Light rare earth elements (LREEs) without
significant Nb, Ta, Pb, Sr and Ba anomalies, similar to modern continental intra-plate tholeiitic basalts
such as Afar and East African rifts. The Ghalaylan metabasites show wide ranges for 87Sr/86Sr(i) (0.7039–
0.7077) and positive εNd(t) values (+0.1 to +4.6). These isotopic compositions are similar to those
expected for slightly depleted subcontinental lithospheric mantle sources. Independently built discrimi-
nation diagrams indicate an intra-continental rifting regime for the source of Jurassic metabasites in the
northern SaSZ. Geochemical and tectonic evidence suggests that rifting or a mantle plume was
responsible for volcanic activity in the Upper Jurassic SaSZ. Considering the variation of ages of basaltic
volcanism along the SaSZ, we suggest that Ghalayan basaltic magmatism reflected a submarine volcano
that formed as part of the late stage continental rift, similar to Afar in the East African Rift system. Our
results indicate that an extensional tectonic regime dominated SaSZ tectonics in the Middle to Late
Jurassic.
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1. Introduction

It is important to know when the SW Eurasia became a
convergent margin, and Jurassic igneous activity in the
Sanandaj Sirjan zone (SaSZ) of NW Iran is critical for solving
this problem. In particular, SaSZ magmatic activity from
Middle Jurassic to Early Cretaceous (187–143 Ma; e.g.
Bayati et al. 2017) is considered by many authors as a
consequence of Neo-Tethys convergence and subduction
(e.g. Stöcklin and Nabavi 1973; Berberian and Berberian
1981; Berberian et al. 1982; Mohajjel et al. 2003; Ghasemi
andTalbot 2006;Davoudian et al. 2008; Shahbazi et al. 2010,
2014; Mahmoudi et al. 2011; Aliani et al. 2012; Mohajjel and
Fergusson 2014; Moinevaziri et al. 2015). However, the sig-
nificance of these Jurassic magmatic rocks is increasingly
debated. Azizi et al. (2018) studied the Upper Jurassic mafic
Panjeh complex in the Songhor-Ghorveh area and sug-
gested an alternative geodynamic scenario dominated by

continental rifting/mantle-plume tectonics. This interpreta-
tion was supported by the regional synthesis of Azizi and
Stern (submitted), who noted that Jurassic SaSZ magma-
tismvaries systematically fromoldest (177Ma) in the SE and
youngest (144Ma) in theNW, younging fromSE toNW. This
behaviour is more consistent with a propagating rift than
an arc, indicating that SaSZ igneous activity migrated
around 600 kmduring a ~ 35Ma interval at 17–20mmyr−1.

Disagreement about whether Jurassic SaSZ
igneous activity occurred at a convergent plate mar-
gin above a subduction zone or at a continental rift
can be called ‘The Jurassic SaSZ controversy’. This
controversy needs to be resolved. Here, we expand
on our previous studies of Panjeh complex intrusive
rocks in the Songhor-Ghorveh area (e.g. Hosseiny
1999; Azizi et al. 2015a, 2018; see references therein)
and report new results on this voluminous magmatic
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sequence. In this paper, we present systematic whole
rock geochemistry, Sr–Nd isotopes and zircon U–Pb
geochronology of low-grade metabasites outcropping
near the Ghalaylan village, focusing on (i) the age of
basaltic magmatism, (ii) magma genesis and (iii)
understanding the tectonic setting of basaltic mag-
matism. The results are used to improve our under-
standing of the northern SaSZ during the Late
Jurassic. We suggest that the Ghalaylan basalts
together with part of the coeval neighbourhood
mafic complexes of Taghiabad, Kangareh (Azizi et al.
2015a) and Panjeh (Azizi et al. 2018) provide further
evidence in support of a continental rifting event
affecting the Cadomian continental crust of Iran.

2. Geological setting

Identification of the Sanandaj Sirjan Zone as a discrete
geological terrane was introduced by Stöcklin (1968).
The SaSZ is 50–100 km wide and approximately 800 km
long and tectonically bounded by the Zagros suture
zone in the SW (Figure 1(a)) and the Urumieh Dokhtar
magmatic arc (UDMA) in the NE (Stöcklin and Nabavi
1973; Berberian and Berberian 1981; Berberian et al.
1982; Alavi 1994; Mohajjel et al. 2003; Golonka 2004;
Ghasemi and Talbot 2006; Davoudian et al. 2008; Chiu
et al. 2013; Mohajjel and Fergusson 2014). The SaSZ
marks the SW margin of the Iranian micro-continent
(Hassanzadeh et al. 2008; Azizi et al. 2016). The SaSZ
also separates Late Cretaceous Zagros ophiolites into
Inner and Outer Belts (Moghadam and Stern 2015).

The SaSZ is characterised by regionally metamor-
phosed and deformed rocks that are spatially asso-
ciated with abundant Jurassic intrusions and volcanic
rocks (Berberian and Berberian 1981; Sepahi and Athari
2006; Ahmadi-Khalaji et al. 2007; Sepahi 2008; Azizi
et al. 2011; Maanijou et al. 2011; Aliani et al. 2012;
Azizi and Asahara 2013; Deevsalar et al. 2014, 2017;
Mohajjel and Fergusson 2014; Yajam et al. 2015).
Cadomian (~550 Ma) basement – which makes up
most of the Iranian crust – outcrops in much of the
SaSZ (Stöcklin and Nabavi 1973; Berberian and
Berberian 1981; Berberian et al. 1982; Mohajjel et al.
2003; Golonka 2004; Ghasemi and Talbot 2006;
Davoudian et al. 2008; Hassanzadeh et al. 2008; Malek-
Mahmoudi et al. 2017; Shabanian et al. 2017).

The SaSZ is divided into northern and southern sec-
tions (Eftekharnejad 1981: Figure 1(a)). The southern SaSZ
abundantly exposes Triassic metamorphic rocks
(Ahmadipour et al. 2003; Sheikholeslami et al. 2008;
Hosseini et al. 2009; Shabanian et al. 2009; Izadyar et al.
2013) with minor Jurassic calc-alkaline igneous rocks
(Arvin et al. 2007; Fazlnia et al. 2009). The northern SaSZ

locally exposes Cadomian basement (Moghadam et al.
2015, 2016; Honarmand et al. 2017; Shabanian et al.
2017; Badr et al. 2018) but is dominated by the Jurassic
metamorphic complex (Baharifar et al. 2004) intruded by
Late Jurassic magmatic rocks (Berberian et al. 1982;
Esmaeily et al. 2005; Sepahi and Athari 2006; Arvin et al.
2007; Torkian et al. 2008; Mazhari et al. 2009; Shahbazi
et al. 2010, 2014; Azizi et al. 2011, 2015a, 2015b, 2016; Azizi
and Asahara 2013; Zhang et al. 2018). A Middle Triassic to
Upper Jurassic volcano-sedimentary metamorphic com-
plex is widely exposed in the northern SaSZ (Mohajjel and
Fergusson 2000; Mohajjel et al. 2003). N-SaSZ Mesozoic
sequences are characterized by volcanic (basalts, andesitic
basalts and andesites), subvolcanic (dolerites and micro-
diorites), volcaniclastic (tuffs, agglomerate and hyaloclas-
tic breccia) rocks interbedded with marbles, black-shales,
slates and metasandstones defining a marine basin built
on continental (Cadomian) crust. The N-SaSZ complex is
unconformably overlain by Cretaceous limestones
(Eftekharnejad 1981; Kazmin et al. 1986; Alavi 1994;
Hosseiny 1999; Baharifar et al. 2004). Upper Jurassic
greenschist to locally amphibolitemetamorphism is docu-
mented (Mohajjel et al. 2003; Baharifar et al. 2004; Nasr-
Esfahani and Ziaei 2007; Davoudian et al. 2008). Various
studies (e.g. Eftekharnejad 1981; Kazmin et al. 1986; Alavi
1994; Ghasemi and Talbot 2006) identified calc-alkaline to
tholeiitic signatures for these Jurassic volcanic rocks, sug-
gesting their genesis above a subduction zone in an
active continental margin. However, in the last decade
alternative scenarios have been proposed such as: (i)
immature island arc, (ii) back arc basin, (iii) thinning of
continental lithosphere and/or mantle upwelling and (iv)
continental/intraplate rifting due to mantle plume (e.g.
Hosseiny 1999; Mousivand et al. 2012; Nasr-Esfahani 2012;
Azizi and Asahara 2013; Rajabzadeh and Esmaeili 2014;
Ahmadi-Khalaji et al. 2015; Hunziker et al. 2015;
Zarasvandi et al. 2015; Azizi et al. 2015a, 2015b, 2018;
Shakerardakani et al. 2018). Which is themost appropriate
tectonic setting for these igneous rocks?

3. Local geology and field observation

Basement of the Ghorveh region (Figures 1(a,b and 2(a))
consists of the Hamadan-Ghorveh metamorphic com-
plex (Hosseiny 1999; Baharifar et al. 2004; Azizi and
Asahara 2013) made of slate, phyllite, schist, marble,
and quartzite interbedded with submarine metavolca-
nic rocks. Fossils define a depositional age from Late
Triassic to Middle Jurassic (Hosseiny 1999) in a marine
environment. Near the city of Sanandaj, the meta-
morphic complex is unconformably overlain by unme-
tamorphosed Cretaceous sedimentary rocks (Hosseiny
1999; Mohajjel et al. 2003; Mohajjel and Fergusson
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2014) (Figure 2), indicating that Hamadan-Ghorveh
metamorphism occurred in Middle to Late Jurassic
time (Hosseiny 1999; Azizi et al. 2015a). In the Middle
Jurassic to Early Cretaceous (ca. 180–140 Ma) the
Hamadan–Ghorveh metamorphic complex was
intruded by both granitoid and gabbroic bodies (Azizi
et al. 2011, 2015a, 2015b, 2018; Azizi and Asahara 2013),
and most of this magmatic complex is also covered by
Cretaceous sedimentary rocks (Hosseiny 1999; Azizi
et al. 2015a, 2015b, 2018). The absence of

Precambrian basement near the Hamedan–Ghorveh
metamorphic complex has been interpreted by Azizi
et al. (2015a), (2015b)) as evidence that an intra-oceanic
island arc collided and metamorphosed during the Late
Cimmerian orogeny. Large volume of mafic rocks
widely distributed in the Kangareh, Taghiabad and
Ghalylan area (Figure 2(a)).

The Ghalaylan metabasaltic complex outcrops near
the village of Ghalaylan (Figures 2(a,b)) interbedded
with the metasedimentary rocks of the Hamedan–

Figure 1. (a) Simplified geological map of Iran (modified from Stöcklin 1968). (b) Simplified geological map of northern Sanandaj
Sirjan zone (N-SaSZ), which shows the bodies that trend parallel to Zagros suture zone in western Iran (modified from Stöcklin
1968).
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Ghorveh metamorphic complex. In the study area, the
metasediments are mainly characterized by (i) foliated
marbles (Figure 3(a)), (ii) meta-chert ribbons along the
marble foliation (Figure 3(b)), and (iii) minor metapelites
(Figure 3(c)) interbedded within the metabasalts and
the marbles.

Outcropping Ghalaylan metabasaltic rocks are mafic
flows and pillow lavas always interbedded with mar-
bles, as undeformed basalts or as greenstone to foliated
greenschist rocks (Figure 3(d)). Greenschist-facies meta-
morphism is revealed by diffuse recrystallization of sec-
ondary chlorite and epidote (Hosseiny 1999; Shaikh
Zakariaei and Monsef 2010; Moinevaziri et al. 2015;
Azizi et al. 2015a, 2015b). Metabasaltic layers inter-
bedded with marbles range from a few centimeters
up to few meters thick (Figures 3(e,f)). Locally, it is
possible to recognize also basaltic patches and bombs
embedded in marbles (Figure 3(f)). The overall sense of
the Ghalaylan metabasaltic rocks and associated mar-
bles is that these are remnants of an Upper Jurassic

submarine volcano and its sedimentary apron. Intrusive
gabbro and granite of similar age define the heart of
the volcano (Yajam et al. 2015; Azizi et al. 2018; Zhang
et al. 2018).

4. Petrography

Ghalaylan metabasaltic rocks consist mainly of pla-
gioclase, clinopyroxene and amphibole (Figures 4(a,
b)). Original porphyry and intersertal textures
(Figures 4(b–d) are locally preserved. Plagioclase
and pyroxene phenocrysts are partially preserved
(Figures 4(c,d)). Groundmass comprises elongated
amphibole and plagioclase with subordinate titanite
and Fe-Ti oxides. Plagioclase phenocrysts with euhe-
dral to subhedral shape are replaced by epidote,
calcite and albite (Figure 4(e)). Clinopyroxene is an
early crystallizing phase replaced by actinolite
(Figure 4(e,f)).

Figure 2. (a) Simplified geological map of the Ghorveh region with radiometric ages for the igneous rocks in this area (modified
from Hosseiny 1999). Dashed line shows the study area, and sampling locations are indicated (b).
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5. Analytical techniques

5.1. Zircon U-Pb dating

Zircons for U-Pb dating were separated from basalt sam-
ple IR-Z-S-99B using conventional magnetic (neodymium
magnet) and bromoform (CHBr3) heavy liquid separation
techniques. Because of the very low amount of zircon
crystals in these basaltic rocks about 2 kg of the sample
was crushed. Obtained zircon were handpicked and then
placed on a glass side. After polishing, backscattered
electron (BSE) and cathodoluminescence (CL) images of

zircon were obtained at the Institute of Earth Sciences at
Beijing University to identify flawless zircon crystals, to
investigate their internal textures/domains and to define
shooting points for dating. U-Pb ages were obtained with
a laser ablation (LA, NewWave UP213 system) inductively
coupled mass spectrometer (ICPMS Agilent 7500s quad-
rupole) at the Department of Geosciences, National
Taiwan University. U-Pb analyses were performed using
helium (He) as carrier gas to improve transport efficiency
(Eggins et al. 1998; Günther and Heinrich 1999; Jackson
et al. 2004). Common Pb correction was applied following

Figure 3. (a) Mylonitized (foliated) marbles with stretching lineation. (b) Cherts forming small boudins in marble, elongated along
stratification. (c) Andalusite porphyroblasts in metapelites. (d) Volcaniclastic layers in marble. (e) Mafic lava flows on top of marble.
Lavas are affected by low grade metamorphism, ranging from relatively undeformed basalt to greenstone or foliated greenschist. (f)
Dimensions of metavolcanic layers scattered throughout the metasedimentary sequence are highly variable. Some basaltic patches
found in the marble are undeformed.

INTERNATIONAL GEOLOGY REVIEW 1639



the in Stacey and Kramers (1975). The ISOPLOT v.4.15
program (Ludwig 2012) was used for calculating the
Concordia and ages, statistics, and for constructing plots.

5.2. Whole rock geochemistry and Sr-Nd isotopes

A total of 13 basaltic rocks were selected for whole-rock
chemical and Sr-Nd isotope analyses (Figure 2(b)).
Analyses were carried out following procedures and
workflow presented in Azizi et al. (2015a).

Major element concentrations of the 13 samples
were measured by conventional X-ray fluorescence
(XRF) method using a ZSX Primus II (Rigaku Co.,
Japan) at Nagoya University, Japan. Glass-beads for
XRF analyses were prepared mixing 0.5 g of sample
powder with 5.0 g of lithium tetraborate. This mixture
was then melted at 1200°C for 15 min with a high-
frequency bead sampler (Rigaku Co., Japan). Loss on
ignition (LOI) was measured from the sample powder
weight in a quartz glass beaker in the oven at 950°C for
5 hours.

Figure 4. Thin section images of Ghalaylan metamafic rocks. (a) Basaltic layers are metamorphosed and are mostly foliated due to
mineral lineation. (b) Metabasalts consist mainly of plagioclase, clinopyroxene and amphibole. (c, d) Metabasalts are porphyritic
with abundant plagioclase and pyroxene phenocrysts which are usually set in an intersertal groundmass. (e) Plagioclase (Pl) are
euhedral to subhedral, plagioclase phenocrysts are moderately saussuritized. (e, f) Clinopyroxene (Cpx) is colorless to brown, it is an
early crystallizing phase that is partially replaced by actinolite. Abbreviations: Cpx = Clinopyroxene, Pl = Palgiocalse,
Act = Actonilite. Tr = tremolite (abbreviation from Whitney and Evans 2010).
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For determining trace element contents and Sr-Nd
isotope ratios, 100 mg of rock powder for each sample
was decomposed in a covered PTFE beaker using 3 ml
of HF (50%) and 0.5–1 mL HClO4 (70%) at 120–140°C on
a hotplate for 3 days until the powder was completely
dissolved. After removing the PTFE cover, dissolved
samples were dried at 140°C on a hotplate with infrared
lamps for up to 2 days. After this procedure, samples
were dissolved in 10 mL of 2 to 4 M HCl and the
resulting solution was analyzed. Sr and Nd separations
were carried out using cation-exchange resin columns
(BioRad AG50W-X8, 200–400 mesh).

Trace element concentrations were analyzed using the
ICP-MS (Agilent 7700x) at Nagoya University. Isotope ratios
of Sr and Nd were measured by thermal ionization mass
spectrometers (TIMS; a VG-Sector 54–30 and a GVI
IsoProbe-T) at Nagoya University. Measured Sr and Nd
isotope ratios were corrected for fractionation based on
86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively.
NIST-SRM987 and JNdi-1 (Tanaka et al. 2000) were adopted
as standards for 87Sr/86Sr and 143Nd/144Nd ratios, respec-
tively. Averages and 1SD for isotope ratio standards, NIST-
SRM987 and JNdi-1, were 87Sr/86Sr = 0.710244 ± 0.000009
(n = 11) and 143Nd/144Nd = 0.512113 ± 0.00006 (n = 9).

6. Results

6.1. Zircon U-Pb age

Zircons in the metabasite rocks are mostly subhedral
transparent and colourless with some fractured and inter-
nal oscillatory zoning. Results of U-Pb analysis of zircons
from sample IR-Z-S-99B (metabasite) are listed in Table 1
and shown in Figures 5(a,b). All grains have Th/U ratios
higher than 0.3, confirming the magmatic origin of the
zircons (Hoskin and Black 2000). After correcting for com-
mon Pb (Stacey and Kramers 1975), Isoplot software ver-
sion 4.15 (Ludwig 2012) was used for age calculation. As
shown in Figure 5, the obtained data define amean age of
144.6 ± 1.9 Ma and MSWD = 1.19, consistent with the
stratigraphic Jurassic age reported by Hosseiny (1999).

6.2. Whole rock geochemistry

Data for major and trace element compositions in the
13 basalts from the Ghalaylan mafic complex are pre-
sented in Table 2. Analyzed samples show mafic com-
positions with 45.6–50.5 wt.% SiO2, 11.3–17.0 wt.%
Al2O3, and 4.5–14.8 wt. % MgO with Mg# (molar Mg/
[Mg+Fetot]) = 29–56. Sum of alkalies (Na2O+K2O) varies
from 1.0 to 4.6 wt.% with Na2O always higher than K2O
(mean values are 2.6 wt.% and 0.5 wt.%, respectively).
High TiO2 contents (up to 2.9 wt.%) and low Al2O3/TiO2

(mean value 9.4) ratios indicate that these are not high-
Mg melts or komatiites (e.g. Redman and Keays 1985;
Arndt and Jenner 1986; Gao and Zhou 2013). One
sample (GL-21) is primitive (10.9 wt. % MgO, 137 ppm
Ni) but has unusually low TiO2 (0.71 wt. %). This sample
crops up as unusual in trace element and isotopic dia-
grams discussed later.

According to the total alkalies versus silica (TAS) diagram
(LeMaitre et al. 2002), the Ghalaylan rocks fall in the basalt
field (Figure 6(a)). In the K2O vs. SiO2 diagram (Peccerillo
and Taylor 1976) the Ghalaylan samples show low-K (tho-
leiite) to shoshonite affinities (Figure 6(b)). On the FeOt/
MgO vs. SiO2 diagram (Miyashiro and Shido 1975; Dilek
et al. 2008), the Ghalaylan lavas are tholeiites (Figure 6(c)).
Harker diagrams for selected major and trace elements are
presented in Figures 7 and 8. SiO2 is used to track differ-
entiation and negatively correlates withMnO and CaO, and
positively correlates with Na2O (Figure 7). Both large ion
lithophile elements (LILEs) and high field strength elements
(HFSES) scatter with no appreciable correlation with silica
(Figure 8).

In chondrite-normalized diagrams (Sun and
McDonough 1989) the Ghalaylan complex shows highly
fractionated rare earth element (REE) patterns (Figure 9(a))
with Light-REEs (LREEs) > Heavy-REEs (HREEs) as indicated
by (La/Yb)N and (Dy/Yb)N ratios of 3.5–5.5 and 1.3–1.5,
respectively. The same patterns are also observed for
neighbour basaltic and gabbroic rocks such as Panjeh,
Taghiabad and Kangareh (Figures 9(b,c)). There is no Eu
anomaly (Eu/Eu* = [EuN/(SmNxGdN)

1/2]; mean = 1.01, ran-
ging 0.75–1.15) (Figures 9(a–c)). In the primitive mantle
(PM)-normalized trace-element diagram (Figures 9(e–h)),
the Ghalaylan basalts are generally enriched in Th, La, Ce,
Nd and Ti; slight depletion of Nb-Ta-Zr-Ti is recognized only
for unusual sample GL21.

In the TiO2 vs V diagram (Figure 10(a); Shervais 1982;
Reagan et al. 2010), the Ghalaylan samples, with Ti/V
ranging 37–57, show Mid-Oceanic Ridge Basalt (MORB)-
like to Oceanic Island Basalt (OIB)-like signatures. Arc-
like signature is recognized only for unusual sample
GL21 with TiO2 < 1.0 wt.% and Ti/V = 17. In the Th/Yb
vs Nb/Yb diagram (Pearce 2008), the Ghalaylan basalts
plot in and above the MORB-OIB array (Figure 10(b)),
falling near Enriched (E)-MORB. Elevation of points
above the mantle array may reflect a subduction-mod-
ified mantle source or crustal contamination.

6.3. Sr-Nd isotope geochemistry

Sr (13 samples) and Nd (7 samples) isotope compositions
for the Ghalaylan basalts are reported in Table 3. Based
on U-Pb zircon age obtained in this study, the initial Sr-
Nd isotope values were calculated at 145 Ma. Studied
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samples present 87Sr/86Sr(145Ma) ranging 0.7039–0.7077
(mean = 0.7059) and εNd(t) ranging from +0.1 to +4.6,
except for sample GL20 showing εNd(t) = −7.8
(mean = + 1.4). GL20 is especially interesting because it
is geochemically similar to other OIB-like Ghalaylan
basalts. Nd model ages (TDM1; DePaolo and Wasserburg
1976) are 0.8–1.1 Ga for most of the Ghalaylan basalts.
Sample GL20, showing a negative εNd(t) value (−7.8),
plots in the Enriched Mantle quadrant in the field of
Continental Flood Basalts (i.e. Hawkesworth et al. 1983;
Philpotts and Ague 2009). Nd model age (TDM1; DePaolo
and Wasserburg 1976) is 2.1 Ga for GL20 sample.

7. Discussion

Geochronological, geochemical and isotope ratio data
for the Ghalaylan metabasalts are discussed below. We
first discuss the tectonic affinities of Ghalayan metaba-
salts, then the evolution of the magma, and finally the
implications of these results for resolving the Jurassic
SaSZ controversy.

7.1. Tectonic affinities

The Ghalaylan mafic complex is composed of Late
Jurassic/Early Cretaceous (ca.145 Ma) unmetamor-
phosed to greenschist facies basalts and associated
intrusive rocks (Figure 6(a)) showing a low-K to med-
ium-K character (Figure 6(b)) with tholeiitic signatures
(Figure 6(c)). Ghalaylan REE- and trace-element patterns
are graphically compared (Figures 9(a,e)) to those of (i)
island arc basalts (after Buchs et al. 2013), (ii) back-arc
basalts (BABB; Pearce et al. 2005; Buchs et al. 2013), (iii)
forearc basalts (FAB; Reagan et al. 2010; Ishizuka et al.
2011), (iv) mid-ocean ridge basalts (MORB; Jenner and
O’Neill 2012), and (v) ocean island basalts (OIB; Willbold
and Stracke 2006; Buchs et al. 2013). With the exception
of GL21, the Ghalaylan basalts show patterns that are
most similar to OIB (Li et al. 2013; Ayalew et al. 2016).

Further evidence for the OIB-like nature of the
Ghalaylan metabasalts is provided by our geochemical
results. Subduction-related magmas generally contain
low TiO2, typically <1wt. % whereas OIB magmas and
rift-related basalts contain significantly more TiO2.
Except for unusual sample GL21 (TiO2: 0.71 wt. %), the
Ghalaylan basalts contain OIB-like abundances (1.2–
2.9 wt.%) of TiO2. Ti/V ratios are also useful for identifying
tectonic settings of magmatism. Except for unusual sam-
ple GL-21 (Ti/V: 17), the Ghalaylan basalts have Ti/V = 37–
57 and plot in the region occupied by enrichedMORB and
OIB (Figure 10(a)). An E-MORB source is also suggested
from the Th/Yb vs. Nb/Yb system (after Pearce 2008; Dilek
and Furnes 2014). On this diagram (Pearce 2008), the
Ghalaylan samples plot close above the MORB-OIB array
(Figure 10(b)) near the composition of lower continental
crust (after Pearce 2008; Buchs et al. 2013; Rossetti et al.
2017; Azizi et al. 2018). This suggests that Ghalaylan mag-
mas might have interacted with continental crust material
(Pearce 2008; Azizi et al. 2018), however this signature
could also be inherited from Cadomian subcontinental
lithospheric mantle that was affected by subduction-
related metasomatism at ~550 Ma.

An OIB-mantle origin is also confirmed by Nb/La
ratios (Peate 1997; Anh et al. 2011) (Figure 10(c)).
Condie (1999) used La/Nb ratios and Ni content for
#Mg: 40 (Ni40) to distinguish basaltic rocks in different
tectonic setting. Arc basalts are characterized by low
Ni40 (less than 40 ppm) and higher La/Nb (>1.6),
whereas MORB and oceanic plateau basalts (OIB) have
higher Ni40 and lower La/Nb. The basaltic rocks of the
Ghalaylan area mainly have high Ni40 (40–180 ppm) and
low La/Nb and are clearly distinguished from arc basalts
on this basis (Figure 10(c)). Finally, on the La-Y-Nb
(Cabanis and Lecolle 1989) diagram (Figure 10(d)),
most samples plot in the continental rift field.

Figure 5. (a, b) Zircon U-Pb Concordia and mean 206Pb/238U
age diagrams for IR-ZS-99B (metabasalt).
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Arc-signature has been identified instead for Ghalaylan
GL21 sample similar to that of Kangareh coarse-grained
gabbro (146–148 Ma; Azizi et al. 2015a, 2018) as indicated
by: (i) tholeiitic to calc-alkaline signature (Figure 6(c)); (ii)
TiO2 content <1.0 wt.% (Figures 7, 10(a)); (iii) Ti/V ratio ~20
(Figure 10(a)) typical of arc magmatism; (iv) general lower
enrichments of REE and HFSE in PM-normalized diagrams
(Figures 9(e,h); Sun and McDonough 1989), with negative
anomalies of Nb and Zr, and patterns comparable to those
of Arc-BABB-FAB system (e.g. Saunders and Tarney 1984).

The Ghalaylan basalts are graphically compared
(Figure 11(a,b)) to Red Sea margin and Mariana
intra-oceanic arc basalts, here chosen to represent
the two major scenarios of (i) continental margin
volcanic rocks and oceanic plateaus with OIB-

signature erupted through continental lithosphere
and (ii) intra-oceanic arc-basin system (see Pearce
2008 and references therein), respectively. In both
Th/Yb vs. Nb/Yb and TiO2/Yb vs. Nb/Yb proxy dia-
grams (Figure 11(a,b); after Pearce 2008), the
Ghalaylan basalts show a distinctive OIB signature
similar to Red Sea margin basalts (Hart et al. 1989;
Barrat et al. 1990, 1993; Volker et al. 1997). Only
unusual sample GL20 plots in the field of the
Mariana arc (Pearce et al. 2005; Pearce 2008). In the
Nb/La vs. εNd(t) diagram (Peate 1997; Anh et al.
2011), OIB-mantle origin is also confirmed by Nb/La
ratios for the Ghalaylan basalts (Figure 11(c)), which
also cluster around the Primitive Mantle (Nb/La: 1.04;
McDonough and Sun 1995).

Table 2. Whole rocks composition of Ghalaylan complex.
Sample GL20 GL21 GL22 GL23 GL24 GL25 GL26 GLZ1 GLZ2 GLZ4 GLZ6 GLZ7 GLZ8

Rock type Basalt Basalt Basalt Basalt Basalt Basalt Basalt Basalt Basalt Basalt Basalt Basalt Basalt

SiO2 (wt.%) 50.45 48.69 48.49 47.85 46.63 48.18 47.61 45.66 45.62 49.30 49.95 49.78 49.97
TiO2 1.90 0.71 1.67 1.72 2.89 1.78 1.23 1.70 1.53 2.17 1.68 1.65 1.64
Al2O3 15.60 13.50 14.50 14.40 13.90 14.70 11.30 16.59 15.48 17.04 16.64 14.49 14.85
Fe2O3 10.08 9.36 12.00 12.40 14.10 12.80 14.10 12.27 10.04 12.31 10.59 11.58 11.90
MnO 0.15 0.17 0.17 0.17 0.34 0.19 0.19 0.21 0.19 0.22 0.15 0.18 0.17
MgO 7.25 10.93 7.69 8.06 5.34 6.35 14.75 7.70 8.86 4.45 7.14 7.59 7.44
CaO 8.89 11.85 11.77 12.17 11.83 10.72 7.42 10.81 14.66 8.72 8.93 11.13 9.52
Na2O 3.61 2.28 2.29 2.15 1.64 2.94 0.95 2.75 1.20 4.09 3.40 2.68 3.68
K2O 0.58 0.45 0.39 0.14 1.55 0.94 0.05 0.98 0.55 0.51 0.45 0.24 0.19
P2O5 0.25 0.16 0.20 0.20 0.38 0.23 0.14 0.21 0.20 0.24 0.20 0.19 0.19
LOI 1.20 2.71 0.79 0.58 1.30 1.08 2.89 1.28 2.12 0.91 1.32 1.01 0.63
Total 99.96 100.81 99.96 99.84 99.90 99.91 100.63 100.16 100.45 99.97 100.46 100.51 100.17

V (ppm) 268 246 266 278 305 278 166 264 238 278 258 263 261
Sc * * * * * * * 33.9 30.5 27.6 35.4 33.6 33.8
Cr 128 753 483 565 48.8 113 1321 278 388 33.5 245 350 383
Co 26.2 39.5 48.2 49.1 21.8 34.3 80.2 42.4 49.1 25.3 31.7 38.8 38.0
Ni 29.1 137 172 146 33.4 24.3 620 108 187 22.1 55.1 108 125
Cu 9.52 62.6 104 95.1 12.1 16.6 18.7 92.0 4.44 8.94 6.94 30.1 59.2
Zn 71.5 78.5 96.0 104 105 90.2 95.9 115 136 88.4 87.7 89.2 102
Ga 20.6 12.4 19.2 18.4 29.4 18.5 14.2 22.1 17.6 23.5 20.1 18.9 17.0
Rb 20.7 8.64 8.89 2.04 79.1 32.0 3.20 29.7 20.0 18.6 15.5 5.54 3.96
Sr 425 349 371 383 359 463 34.3 421 610 440 432 425 344
Y 27.8 15.5 20.9 22.0 33.0 20.9 13.4 21.8 20.3 21.1 22.4 21.9 20.5
Zr 75.9 43.3 104 99.4 155 128 58.2 108 124 131 89.3 99.1 111
Nb 16.8 2.37 10.4 10.5 21.7 15.9 5.84 7.10 7.83 9.37 7.38 7.18 7.81
Cs 2.32 0.440 0.400 0.15 1.52 1.06 0.250 0.826 0.570 0.436 1.82 0.408 0.204
Ba 111 100 99.0 30.1 192 74.6 11.5 94.1 43.6 107 132 49.4 41.1
Hf 2.74 1.45 3.23 3.14 3.90 3.73 1.81 3.04 3.30 3.50 3.11 2.93 3.06
Ta 1.16 0.26 0.790 0.81 1.29 1.14 0.480 0.679 0.658 0.849 0.768 0.608 0.618
Pb 3.61 3.08 2.38 5.85 2.57 2.17 1.36 10.0 2.74 4.55 3.95 3.95 5.66
Th 3.62 1.98 1.11 0.98 1.37 1.78 0.840 1.42 2.74 1.53 2.38 1.02 1.13
U 0.72 0.36 0.320 0.29 0.9 0.35 0.210 0.456 2.72 0.414 0.599 0.337 0.274
La 18.0 10.4 9.67 9.80 23.2 13.3 7.65 12.9 14.7 14.3 14.2 9.63 9.43
Ce 40.6 22.3 23.2 23.2 49.0 29.7 17.6 28.8 32.4 31.9 30.7 22.1 21.9
Pr 5.11 2.96 3.07 3.11 6.23 3.80 2.32 3.67 4.00 4.09 3.93 3.05 2.95
Nd 22.1 13.3 14.3 14.6 27.2 16.4 10.3 16.2 17.1 17.7 17.1 13.8 13.7
Sm 5.24 3.11 3.63 3.79 6.34 3.69 2.39 4.04 3.92 4.08 4.04 3.71 3.39
Eu 1.33 1.05 1.30 1.34 2.44 1.04 0.829 1.52 1.50 1.47 1.27 1.42 1.22
Gd 5.71 3.21 4.32 4.54 6.82 4.07 2.77 4.43 4.11 4.40 4.35 4.17 3.94
Tb 0.900 0.474 0.697 0.724 1.07 0.654 0.444 0.684 0.660 0.687 0.683 0.678 0.619
Dy 5.63 3.02 4.31 4.54 6.57 4.14 2.78 4.27 4.00 4.09 4.30 4.26 3.93
Ho 1.11 0.611 0.837 0.889 1.301 0.831 0.545 0.842 0.793 0.814 0.854 0.849 0.757
Er 3.06 1.72 2.27 2.42 3.67 2.36 1.46 2.32 2.18 2.20 2.40 2.30 2.14
Tm 0.415 0.238 0.307 0.323 0.500 0.328 0.205 0.314 0.296 0.306 0.319 0.294 0.280
Yb 2.57 1.56 1.89 2.01 3.15 2.04 1.24 1.96 1.91 1.90 2.00 1.89 1.82
Lu 0.351 0.227 0.258 0.278 0.436 0.288 0.170 0.287 0.272 0.273 0.303 0.278 0.284

* not measured
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Figure 6. (a) Total alkalies – silica (TAS) chemical classification diagram (LeMaitre et al. 2002), showing that Ghalaylan mafic rocks
plot in the basalt field. (c) In the K2O-SiO2 variation diagram most of the samples are plotted in the Low-K series. (c) In the FeOt/
MgO vs SiO2 diagram (Miyashiro and Shido 1975; Dilek et al. 2008) Ghalaylan basalts present a clear tholeiitic signature.

Figure 7. Harker diagrams for selected major oxides. SiO2 is the differentiation index and negatively correlates with MnO and CaO
and positively correlates with Na2O, showing some minor magma differentiation for each group.
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7.2. Magma evolution

The Ghalayaban basalts range from near primitive (GL-
26: 14.8 wt. % MgO, 620 ppm Ni, 1320 ppm Cr) to
fractionated (GLZ4: 4.5 wt. % MgO, 22.1 ppm Ni, 33.5
ppm Cr). Because fractionation in the crust provides
opportunities for crust and magma to interact, fractio-
nated basalts are more likely to be contaminated by
continental crust than are primitive basalts; correspond-
ingly, primitive basalts are most likely to preserve che-
mical and isotopic information about their mantle
source. Two samples (GL-21 and GL-26) contain
>10 wt. % MgO, >130 ppm Ni, and >700 ppm Cr and
are the least fractionated. These are geochemically and
isotopically quite different, demonstrating strong het-
erogeneity in the mantle source region. This source
heterogeneity is also revealed in trace element varia-
tions and Sr-Nd isotope ratios of all Ghalaylan metaba-
salts, which clearly define geochemically distinct groups
that mostly reflect mantle source variability. In spite of
strong heterogeneity in the mantle source, all Ghalaylan
metabasalts show similar strongly-LREE-enriched pat-
terns (Figure 9(a)). The plot of La/Yb versus Dy/Yb ratios
(Figure 11(d)) can help distinguish between melting in
the spinel and garnet stability fields (e.g., Thirlwall et al.
1994; Jung et al. 2012; Mayer et al. 2013). Modelling
(Figure 11(d)) suggests that these melts were derived
from ~5% melting of amphibole-spinel peridotite, but

because of the similar effects of amphibole and garnet
in fractionation HREE, a role for garnet peridotite can-
not be excluded.

Important indications on the magma source can be
gleaned from the Sr-Nd isotope ratios of the Ghalaylan
basalts. These have 87Sr/86Sr(i) of 0.7039–0.7077 and
εNd(t) ranging from +0.1 to +4.6, suggesting an OIB-
like depleted mantle source, possibly affected by sea-
water alteration. Basaltic sample GL20 with εNd
(t) = −7.8 and 87Sr/86Sr(145Ma) = 0.7069 fall in the
enriched mantle quadrant in the field of continental
flood basalts of Hawkesworth et al. (1983) near the
line indicating crust contamination (after Philpotts and
Ague 2009). Nd model ages range widely, from 829 to
2080 Ma, with a mean of 1.1 Ga. This is somewhat older
than expected for Cadomian SCLM, suggesting partici-
pation of some older mantle remnants.

In the Sr-Nd isotopic diagram (Figure 12), oceanic
plateau and OIBs generally plot between the Depleted
Mantle (DM) and the Chondritic Uniform Reservoir
(CHUR) while the compositions of continental flood
basalts generally plot in the field of Enriched Mantle
(negative εNd(t), and enriched 87Sr/86Sr(i)), indicating
interaction/contamination with lithospheric mantle
and/or continental crust (Campbell and Griffiths 1990;
Ellam and Cox 1991; Saunders et al. 1992; Chung and
Jahn 1995; Ernst and Buchan 2003; Qin et al. 2011). On

Figure 8. Both large ion lithophile elements (LILEs) and high field strength elements (HFSEs) show scattered distribution with no
appreciable correlation.
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the εNd(t) vs. 87Sr/86Sr(i) diagram (Figure 12) the
Ghalaylan samples show OIB-like Sr-Nd isotopic signa-
tures comparable to those of Afar and Emeishan con-
tinental flood basalts. Ghalaylan GL20 basalt sample

with (i) high TiO2 (1.9 wt%), Yb (2.57 ppm), Nb (16.8
ppm), Y (27.8 ppm) values, (ii) highest SiO2 (50.5 wt%)
and Th (3.62 ppm) contents, and (iii) negative εNd(t)
(−7.8) value show clear affinities with both Tarim and

Figure 9. Chondrite-normalized REE diagrams (after Sun and McDonough 1989) (a–d) for Ghalaylan, Panjeh, Kangareh and
Taghiabad mafic rocks and Primitive mantle normalized trace element diagrams (e–h). Petrological group and references: BABB,
back arc basalts (Pearce et al. 2005; Buchs et al. 2013); FAB, forearc basalts (Reagan et al. 2010; Ishizuka et al. 2011); MORB, mid-
ocean ridge basalts (Jenner and O’Neill 2012); OIB, ocean island basalts (Willbold and Stracke 2006; Buchs et al. 2013). Island arc
basalts after Buchs et al. (2013).
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Figure 10. (a) In TiO2 vs. V diagram (Shervais 1982; Reagan et al. 2010), the Ghalaylan samples, with Ti/V ranging 37–57, show OIB-
like signature. Arc-like signature is recognized only for sample GL21 with TiO2 < 1.0 wt. % and Ti/V ratio of 17. (b) In Th/Yb vs Nb/Yb
diagram (Pearce 2008), the Ghalaylan basalts plot along and above the MORB-OIB array, falling near E-MORB. (c) The La/Nb ratios
and Ni content for Mg#40 (= Ni40; Condie 1999). Samples with Mg# = 40 ± 3 were plotted. The calculation of the Ni40 for the
basaltic rocks in the Ghalaylan area shows that these rocks mainly have high Ni40 (40–180 ppm) and low La/Nb, clearly
distinguishing them from arc basalts. (d) La-Y-Nb (Cabanis and Lecolle 1989) diagram, which classifies the Ghalaylan mafic rocks
as rift basalt, different from back arc setting. The back arc basin basalts field is from Shinjo et al. (1999).

Table 3. Whole rocks isotope ratios of Ghalylan complex.
Sample Rock 87Rb/86Sr 87Sr/86Sr(p) ±1SE 87Sr/86Sr(i) 147Sm/144Nd 143Nd/144Nd(p) ±1SE 143Nd/144Nd(i) ɛNd(t) TDM
GL20 Basalt 0.140 0.707273 0.000041 0.7070 0.143 0.512188 0.000011 0.51205 −7.8 2080
GL21 Basalt 0.0711 0.704068 0.000052 0.7039 0.141 0.512742 0.000004 0.51261 3.1 859
GL22 Basalt 0.0688 0.704948 0.000055 0.7048 0.154 0.512807 0.000004 0.51266 4.1 871
GL23 Basalt 0.0153 0.704677 0.000172 0.7046 0.157 0.512836 0.000004 0.51268 4.6 845
GL24 Basalt 0.632 0.709026 0.000061 0.7077 0.141 0.512591 0.000004 0.51246 0.1 1170
GL25 Basalt 0.198 0.706264 0.000025 0.7058 0.136 0.512693 0.000004 0.51256 2.2 892
GL26 Basalt 0.267 0.707835 0.000065 0.7073 0.140 0.512749 0.000004 0.51261 3.2 829
GLZ1 Basalt 0.204 0.706142 0.000007 0.7057
GLZ2 Basalt 0.095 0.706191 0.000006 0.7060
GLZ4 Basalt 0.122 0.706716 0.000006 0.7065
GLZ6 Basalt 0.104 0.707516 0.000006 0.7073
GLZ7 Basalt 0.038 0.705415 0.000006 0.7053
GLZ8 Basalt 0.033 0.705196 0.000006 0.7051

The natural Sr and Nd isotope ratios were normalized based on 146Nd/144Nd = 0.7219 and 86Sr/88Sr = 0.1194. Averages and 1SD for isotope ratio standards,
NIST-SRM987 and JNdi-1, were 87Sr/86Sr = 0.710244 ± 0.000009 (n = 11) and 143Nd/144Nd = 0.512113 ± 0.00006 (n = 9). The CHUR (Chondritic Uniform
Reservoir) values, 147Sm/144Nd = 0.1967 and 143Nd/144Nd = 0.512638, were used to calculate the ε0(DePaolo and Wasserburg 1976). TDM = 1/ʎ ln
[((143Nd/144Nd) sample-0.51315)/((

147Sm/144Nd)sample-0.2137)+1].
p = present, i = initial, SE = standard error.
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Emeishan Large Igneous Plateaus (LIPs). Unusual sam-
ple GL21 again is distinctive with the lowest 87Sr/86Sr(i)
(~0.7039) falling inside the restricted field of IBM intra-
oceanic arc basalts.

These results indicate that the source mantle was
heterogeneous but mostly was not metasomatized by
hydrous fluids or sediment melts from a Jurassic sub-
ducted slab. Given that the crust is largely Cadomian in
age, it seems likely that partial melting of subcontinen-
tal lithospheric mantle of Cadomian age contributed to
forming Ghalaylan basaltic magmas. Some of this man-
tle may have been affected by Cadomian subduction to
produce rare arc-like melts represented by GL21.

7.3. Implications for resolving the Jurassic SaSZ
controversy

Formation as a magmatic arc (e.g. Tatsumi 2005;
Pichavant and Macdonald 2007; Zhang et al. 2011) is

the dominant interpretation for Jurassic SaSZ igneous
activity (e.g., Berberian and Berberian 1981; Berberian
et al. 1982; Mohajjel et al. 2003; Ghasemi and Talbot
2006; Davoudian et al. 2008). Recent studies (Azizi et al.
2015a, 2018) challenge this interpretation for the north-
ern-central SaSZ, and in particular for the Songhor-
Ghorveh area.

Based on (i) chemical composition of Ghalaylan
basalts and (ii) their clear OIB-signature, we explore
the possibility that they are not the result of convergent
margin magmatism.

Considering the (i) geochemical evidence and (ii) the
Afar-like Sr-Nd isotopic signature (Figure 12) high-
lighted in this work, we propose that Ghalaylan basalts
are the product of OIB-like magmatism associated with
continental rifting and/or mantle plume beneath the
SaSZ in Upper Jurassic time (ca. 160–144 Ma.).

It is worth noting that a similar scenario of continen-
tal rifting associated with OIB-like magmatism due to

Figure 11. (a, b) In both Th/Yb vs. Nb/Yb and TiO2/Yb vs. Nb/Yb proxy diagrams Ghalaylan basalts show a distinct OIB signature and
fall mainly in the field of Red Sea margin basalts (Hart et al. 1989; Barrat et al. 1990, 1993; Volker et al. 1997; Pearce 2008). Only
sample GL21 in both diagrams is different, plotting in the field of Mariana arc lavas (Pearce et al. 2005; Pearce 2008). (c) Nb/La vs. ?
Nd(t) diagram. An OIB-mantle origin is also confirmed by Nb/La ratios (Peate 1997; Anh et al. 2011) for the Ghalaylan basalts
showing Nb/La ratio mean value close to that of Primitive Mantle melts (Nb/La: 1.04; McDonough and Sun 1995). (d) Plot of La/Yb
versus Dy/Yb ratios for distinguishing between partial melting of peridotite in the spinel and garnet stability fields (e.g., Thirlwall
et al. 1994; Jung et al. 2012; Mayer et al. 2013). The Ghalaylan basalts formed by 5–8% melt from spinel-facies mantle.
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mantle plumes activity in Late Jurassic-Early Cretaceous
is reported for the Silesian basin (western Carpathians,
Eurasian plate) (Golonka et al. 2006 and references
therein). In their work on the circum-Carpathian region,
Golonka et al. (2006) integrated position of Upper
Jurassic magmatics (Lucin´ska-Anczkiewicz et al. 2000;
Golonka et al. 2006) and Early Cretaceous volcanics
(Lashkevitsch et al. 1995, Lewandowski et al., 2003)
with Mesozoic plate tectonic models in a Pangea frame-
work and identified a correspondence between
Jurassic-Cretaceous coordinates of Silesian basin mag-
matism and current position of both western Turkey
and Levantine (e.g. Dead Sea) hot spots. In their plate-
tectonic evolution model, Golonka et al. (2006) suggest
therefore that the Silesian rifting and the OIB-magma-
tism at Late Jurassic-Early Cretaceous was a possible
evidence of western Carpathian domain passing over
the head of the Levantine plume.

Considering the OIB-like signature at 155–158 Ma of
Kangareh-Taghiabad fine-grained gabbros (Azizi et al.
2018) intruding the Triassic to Middle Jurassic marine

sedimentary sequence (Oxfordian-Kimmeridgian; Azizi
et al. 2015a), we hypothesize that rifting began by
Middle Jurassic – Upper Jurassic time and we think
that further useful constraints on the evolution of this
continental rift might be obtained, in future studies, by
reconstructing the subsidence history of Jurassic
sediments.

Finally, the reinterpretation of Jurassic igneous activity
in the SaSZ as rift- and/or plume-related, opens new ques-
tions on initiation and timing of the Neotethys subduction
beneath the SWmargin of Asia. If Jurassic SaSZmagmatism
does not reflect an arc setting, there is no reason to further
invoke an active subduction zone at that time. This should
be taken into account in future efforts to reconstruct the
tectonic evolution of the region in Mesozoic time.

8. Conclusions

The Ghalaylan basaltic complex represents a key for
deciphering the Late Jurassic tectono-magmatic

Figure 12. Comparison of ?Nd(t) vs. 87Sr/86Sr(i) between the Ghalaylan basalts and (i) OIB-melt, (ii) LIP and continental flood
basalts and (iii) Intra-oceanic arc-basin magmatism. Basalts from Afar depression (Hart et al. 1989; Kampunzu and Mohr 1991; Vidal
et al. 1991; Deniel et al. 1994; Rogers 2006) are selected as representative of OIB-melts from plume activity under continental crust
since their unambiguous signature of mantle plume (Rogers 2006 and references therein). Fields of the Emeishan large igneous
province (ELIP) in SW China (Chung and Jahn 1995; Xu et al. 2001, 2004; Ali et al. 2005; Anh et al. 2011; Song et al. 2011) and Tarim
Basin in NW China (Zhang et al. 2003; Xia et al. 2006; Yang et al. 2007; Li et al. 2008; Chen et al. 2009; Zhou et al. 2009; Tian et al.
2010; Qin et al. 2011) are shown. Izu-Bonin-Mariana (IBM) arc-lavas (Stern et al. 2003; Reagan et al. 2010; Ishizuka et al. 2011) are
chosen as representing an intra-oceanic arc-basin system. The Ghalaylan samples show OIB-like Sr-Nd isotopic signature comparable
to those of Afar plume and Emeishan Traps (ELIP). To note that Ghalaylan GL20 basalt sample characterized by (i) higher TiO2
(1.9 wt.%), Yb (2.57 ppm), Nb (16.8 ppm), Y (27.8 ppm) values, (ii) highest SiO2 (50.5 wt.%) and Th (3.62 ppm) contents, (iii)
relatively low #Mg (44) and (iv) negative ?Nd(t) (−7.8) value show clear affinities with both Tarim and Emeishan LIPs basalts.
Ghalaylan GL21 basalt shows a different distinctive signature with strong depletion in 87Sr/86Sr(i) ratio and fall inside the narrow
field of IBM representing intra-oceanic arc-basin system.
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evolution of the Songhor-Ghorveh area in the northern
Sanandaj-Sirjan zone. Significant outcomes of our study
include:

● Ghalaylan basaltic lava flows and pillows are the
evidence of a submarine volcano active at ca.
144 Ma (as determined by zircon U-Pb dating).
Whole rock geochemistry is comparable to the
neighbourhood Late Jurassic basaltic complexes
of Panjeh and Kangareh-Taghiabad;

● Ghalaylan submarine volcano formed on thinned
Cadomian continental crust with Triassic to
Middle-Late Jurassic marine sediments, a tectonic
setting consistent with continental rifting;

● Ghalaylan basalt whole-rock and Sr-Nd isotope
geochemistry show OIB-like compositions compa-
tible with ~ 5% melting of heterogeneous subcon-
tinental lithosphere and/or plume mantle. Only
minor evidence of interaction/assimilation of con-
tinental crust are recognized;

● Trace element geochemistry and Sr-Nd isotope
compositions of Ghalaylan basalts overlap those
of Afar, Emeishan LIP and Tarim Basin mafic rocks,
representative of OIB magmatism in continental
rifting due to the activity of mantle-plumes.

To conclude, results obtained in this study, and com-
parison with existing data for neighbourhood Panjeh,

and Kangareh-Taghiabad mafic complexes of Late
Jurassic age answer the ‘Jurassic SaSZ controversy’ in
favour of a magmatic continental rift.
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