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ABSTRACT -

The composition of basalts erupted at the earliest stages in the evolution of a back-arc basin permit unique insights into the
composition and structure of the sub-arc mantle. We report major and trace element chemical data and O-, Sr-, Nd-, and Pb-
isotopic analyses for basalts recovered from four dredge hauls and one ALVIN dive in the northern Mariana Trough near
22°N. The petrography and major element chemistry of these basalts (MTB-22) are similar to tholeiites from the widest part
of the Trough, near 18°N (MTB-18), except that MTB-22 have slightly more K,O and slightly less TiO,. The trace element
data exhibit a very strong arc signature in MTB-22, including elevated K, Rb, Sr, Ba, and LREE contents; relatively low
K/Ba and high Ba/La and Sr/Nd. The Sr- and Nd- isotopic data plot in a field displaced from that of MTB-18 towards
Mariana arc lavas, and the Pb-isotopic composition of MTB-22 is indistinguishable from Mariana arc lavas and much more
homogeneous than MTB-18. Mixing of 50-90% Mariana arc component with a MORB component is hypothesized. We
cannot determine whether this resulted from physical mixing of arc mantle and MORB mantle, or whether the arc component
is introduced by metasomatism of MORB-like mantle by fluids released from the subducted lithosphere. The strong arc
signature in back-arc melts from the Mariana Trough at 22° N, where the back-arc basin is narrow, supports general models
for back-arc basin evolution whereby early back-arc basin basalts have a strong arc component which diminishes in
importance relative to MORB as the back-arc basin widens.

1. Introduction ment characteristics for arc and BAB melts. Arc
magmas are characterized by large ion lithophile
element (LILE) enrichments and high-field
strength cation (HFSC) depletions and have more

radiogenic Sr and less radiogenic Nd while BAB

The relationship of the magma source of back-
arc basins to that of island arcs is an important
and unresolved problem. Of particular petrologic

interest is how arc and back-arc basin (BAB)
magma sources evolve with time, because a better
understanding of this should lead to firmer con-
straints on the distribution and melting history of
these mantle sources. For mature systems, the
magma sources are isotopically distinguishable and
the interplay between sources and melting regimes
leads to distinctly different major and trace ele-
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melts are very similar to mid-ocean ridge basalt
(MORB), with minor or no LILE enrichment and
no HFSC depletions. For mature systems, the
geographic separation between the volcanic front
of the arc and the BAB rift readily allows for
distinct magma sources, mantle flow lines, and
thermal regimes to be maintained. In contrast,
initial back-arc rifts develop within or very close
to the arc [1,2]; this requires that arc and initial
BAB sources either be identical or closely juxta-
posed within the upper 150 km of the sub-arc
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Fig. 1. Locality map of the Mariana arc system, showing the location of sam,

location of DSDP Leg 60 drill sites, sited along 18° N and KK-

mantle. The magmatic evolution of a back-arc
basin can be expected to show how fast the BAB
source comes to lose its arc-like character, and this
information leads to new insights about mantle
convection at convergent margins, the dimensions
of the mantle wedge affected by slab-derived
fluids, and the distribution of sources in the man-
tle wedge.

The purpose of this paper is to contribute to
our understanding of back-arc basin evolution by
reporting the results of geochemical and isotopic
studies of samples recovered in the northernmost
Mariana Trough. The Mariana Trough, one of the
best-documented examples of an active back-arc

149° \
pling sites discussed in this study. Also shown are the

1 and KK-2 dredge sites, farther to the north in the Mariana Trough.

basin, has been the focus of abundant geophysical,
DSDP, and dredging studies [e.g., 3-7]. There
exists an extensive database of geochemical and
isotopic studies of Mariana Trough basalts (MTB)
[8-14,16,30,49,50] but these are primarily clus- -
tered around 18° N, where the Mariana Trough is
widest and, probably, most mature (Fig. 1). Sam-
ples for this study come from the northernmost
part of the Mariana Trough, just south of 22°N;
for the sake of brevity we refer to these as MTB-22
and compare them throughout this study with
MTB-18.

It has been argued that the northward narrow-
ing of the Mariana Trough reflects the northward




212

propagation of rifting [14]. In this case, MTB-22
correspond to early BAB melts. It has also been
suggested that the northward termination of the
Mariana Trough is a consequence of slower
spreading due to the collision of the Ogasawara
Plateau with the trench at 26°N [15]. In either
case, MTB-22 correspond to mantle melts gener-
ated close to arc sources. Comparison of geochem-
ical and isotopic data for MTB-22 with MTB-18
and with the Mariana arc itself promises to pro-
vide new constraints on the relationship between
arc and BAB mantle sources and melting regimes.

2. Sample locations and petrography

The samples come from four dredges of the
1985 cruise of the R/V T.G. Thompson (TT-192,
D-65 to 68) and one ALVIN dive in 1987(1881;
approximate locations are shown in Fig. 1).
Dredges 66, 67, and 68 were from the SE end of a
NW-SE trending high centered on 21°55'N,
143°E that probably marks the present spreading
axis (D-66: 21°47’'N, 143°06'E, 3575-3920; D-
67: 21°50’N, 143°03’E, 3290-3710 m; D-68:
21°42’N, 143°10’E, 3100-3385 m). ALVIN dive
1881 (21°35'N, 143°16’E, 3100-3300 m) is from
farther SE along this trend, in a region where a
maximum of fresh basaltic flows were observed
from ALVIN; correspondence between the bathy-
metric evidence and seafloor observations of
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abundant fresh basalt flows indicates that all of
the above samples are from an actively spreading
ridge segment. Dredge 65 is from the southern
flank of a 400, m high seamount (21°54'N,
143°05’E, 2530-3150 m), about 10 km NE of the
spreading axis sampled at D-67.

All of the samples analyzed here are aphyric to
porphyritic or vitrophyric, with phenocrysts of
plagioclase, clinopyroxene, and less commonly,
olivine; all lavas have abundant vesicles (Appen-
dix 1). Dredge 66 had some Mn-coated basalts
and some altered basalts were recovered on D67.
Care was taken to obtain petrographically fresh
specimens of all sample sites for geochemical and
isotopic analyses. '

3. Analytical techniques

Major elements were analyzed by a combina-
tion of XRF and atomic absorption analyses of
rock powders and electron microprobe (HIG
Cameca MBX) analyses of natural glasses; ana-
lytical details are reported elsewhere [16]. Trace
elements were analyzed by isotope dilution at
UTD, except for Pb, analyzed at DTM; proce-

dures, total processing blanks, and standard val- .

ues are discussed elsewhere [17]. Sr and Nd iso-
topic compositions were determined using a MAT
261 multi-collector solid-source mass spectrometer
at UTD. Sr was isolated using standard cation-ex-

TABLE 1
Major elements analyses, MTB-22

65201 6503 6504 6605 6606 6705 6707

1 2 1 2 1 1 2 1 2 1 1
Sio, 53.98 54.42 54.89 54.86 53.90 49.05 50.61 48.67 51.09 51.75 51.14
TiO, 113 1.10 1.11 1.22 111 0.80 0.91 0.79 0.92 .01 14
Al,O, 15.99 16.03 16.58 15.52 16.36 16.02 16.33 15.71 16.36 16.76 15.54
Fe,OF 9.87 9.73 9.67 10.16 9.711 8.53 8.73 8.45 9.42 9.17 10.90

. MnO ND ND 0.17 ND ND ND ND ND ND ND ND

MgO 4.59 4.61 4.78 425 4.78 10.07 7.12 9.82 6.63 6.24 4.80
CaO 8.76 8.37 8.92 8.44 9.01 12.23 12.43 12.09 11.74 11.21 9.23
Na,O 332 3.39 3.59 3.40 327 2.04 2.36 221 2.49 2,75 3.01
K,O 0.65 0.35 0.60 0.40 0.56 0.28 0.32 0.30 0.33 0.57 0.49
P05 0.13 ND 0.13 ND 0.14 0.08 ND 0.08 ND 0.16 0.16
TOTAL 98.42 98.00 100.44 98.25 98.84 99.10 98.81 98.12 98.96 99.62 96.68
Mg# 56 56 57 53 57 76 69 76 65 65 54
CaO/A1,0, 0.55 0.52 0.54 0.54 0.55 0.76 076 077 0.72 0.67 0.59

1= XRF whole rock [16]; 2 = Glass, Electron Microprobe [16}; Mg¥* =100[Mg,/Mg+ Fe?™" |; FeO/Fe,0; adjusted using the method

of [56] i.e., Fe;05 = TiO, +1.5.
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change techhiques, with a total processing blank

of 2 ng. Both unleached and leached samples were

analyzed for Sr; leaching was accomplished by
placing powders in 2.5N HCI for. 12 h. Sr was
analyzed in the static mode and fractionation-cor-
rected to 86Sr/BBSr =0.1194; 31 analyses of E&A
SrCO; yielded a mean ¥'Sr/*%Sr of 0.70806 + 3
(total range) and **Sr/*°Sr of 0.056488 + 40 (total
range). Nd was isolated using a procedure mod-
ified after Richard et al. [18]; total processing
blanks for Nd are about 0.5 ng. Analyses were
done in the multicollection dynamic mode and
fractionation-corrected to “*Nd /144Nd = 0.7219;
23 analyses of the UCSD Nd standard yielded a
mean "*Nd/"*Nd of 0.511848 + 10 (total range)
and a mean "*Nd/"**Nd of 0.3484011 + 8 (total
range). The BCR-1 standard has a "*Nd/**Nd
of 0.51262, and we take this as equal to the
isotopic composition of the bulk earth for the
purpose of calculating epsilon-Nd. Lead isotopes
were analyzed at DTM on the VG 354 multicol-
lector mass spectrometer in the static mode fol-
lowing well-established procedures [19]; Pb iso-
tope ratios are reproducible and accurate to 0.05%
per amu.

All samples were analyzed for a §°0; oxygen
was extracted using CIF; [20], similar to the BrF;
method [21]. The resulting CO, gas was analyzed
with a Finnigan MAT Delta E triple-collector 90 °
sector mass spectrometer. Oxygen isotope ratios
were normalized against SLAP (8180VSMOW =

—55.0). The 8'°0 for NBS-28 Quartz using this
technique is +9.50 4+ 0.15, also relative to
VSMOW. The reproducibility of whole-rock sam-
ples is better than +0.3. Because of subtle alter-
ation effects on the whole rock samples and be-
cause we want to characterize the magmatic com-
positions, we only report the three samples of
glass in Table 3.

4. Results

Major element data for the twelve samples are
listed in Table 1, in most cases with XRF whole
rock (WR) and electron microprobe glass data for
the same sample. All are basalts and basaltic
andesites. The basalts (SiO, < 52%) are approxi-
mately saturated in silica, being either olivine
normative or only slightly quartz-normative; all
are tholeiites. All samples have moderate potas-
sium contents, from 0.28 to 0.61% K,O for WR
and 0.32 to 0.59% for glasses. In most cases—and
as expected for aphyric to porphyritic basalts—
concentrations of incompatible elements TiO,,
Na,0, and K,O in the glass are closely compara-
ble to those in the WR. This observation is espe-
cially important in the case of TiO,, because it
indicates that Ti-bearing minerals are not im-
portant liquidus phases. Comparison of K ,O con-
tents between D65 WR and glass samples indi-
cates that the WR contains more K,O than the
glass. This suggests that alteration may have ad-

6708 6801 6803

1881-4 1881-7

1 2 1 2 1 2 1 2 1 2
49.08 51.84 49.03 51.97 48.88 51.66 52.35 53.01 53.95 54.48
0.92 1.07 0.98 1.15. 0.90 1.04 1.01 1.13 1.32 1.51
15.08 16.65 15.77 16.54 15.58 - 16.53 17.30 16.33 16.81 15.57
9.03 7.99 7.89 8.16 8.26 7.83 8.52 9.08 9.41 10.23
ND ND ND ND ND ND 0.15 0.13 0.16 0.15
10.73 6.37 9.25 6.31 9.59 6.60 6.50 6.05 512 431
10.41 11.57 10.79 11.22 10.34 11.42 11.01 10.56 9.17 8.52
2.27 2.73 2.55 2.76 2.49 2.63 2.86 2.89 3.44 3.57
045 0.38 0.59 0.59 0.52 0.55 0.46 0.41 0.61 0.49
0.13 ND 0.16 ND 0.16 ND 0.13 0.19 0.18 0.22
98.10 98.60 97.01 98.70 96.72 98.26 100.29 99.78 100.17 99.05
76 70 77 69 76 71 68 65 61 54
0.69 0.69 0.68 0.68 0.66 0.69 .0.64 0.65 0.55 0.55
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ded a significant amount of K,O. This is surpris-
ing because WR Na,O contents are nevertheless
lower than that of the corresponding glass. The
similarity of WR-glass chemistry together with the
pristine appearance of the phenocrysts and ¥1Sr / 86
Sr ratios being largely unaffected by leaching (re-
ported below) indicates that alteration generally
has been slight. Alteration for D65 samples is the
most extensive of the suite reported here, and even
for these we believe that alteration has been slight
enough that the Pb, Ba and REE contents and
Nd- and Pb- isotopic compositions were unaf-
fected. For the other samples, the correspondence
between our petrographic observations, glass-WR
" comparisons, invariance of *'Sr/*Sr determined
before and after leaching, and WR 80 (+5.7 to
+6.5) indicates that these are fresh, and that the
trace element and isotopic values are magmatic.

The Mg# of MTB-22 shows a wide range [WR
Mg# = 54-77 (mean = 67); glass Mg# = 53-71
(mean = 64)] and indicates extents of fractiona-
tion that are similar to MTB-18 (mean Mg# = 63
4 4 (errors on means are hereafter reported as 1
std. dev.); [8,9,11-13]); these are generally less
fractionated than basalts and basaltic andesites
from the Mariana arc, Mg# =54 + 8) [12,22-25].
In contrast, the TiO, contents of MTB-22 (WR =
1.01% + 0.16%; glass =1.12% + 0.18%) are inter-
mediate between those of the Mariana arc (0.85%
+ 0.20%; [12,13,22-25,27-29]) and MTB-18
(1.21% + 0.26%; [8,9,11-13,26]). A plot of TiO, vs.
MgO (Fig. 2) shows that for samples with 4-8%
MgO, MTB-22 have less TiO, than MTB-18. This
suggests that the lower TiO, of MTB-22 may be a
source effect.

Trace element data for MTB-22 are listed in
Table 2. Compared with MTB-18, MTB-22 are
enriched in LIL and LREE. There is a marked
enrichment in Rb, K, Sr, and Ba from south to
north in the Mariana Trough, and a corresponding
decrease in K/Ba and increase in Sr/Nd and
Ba/Sr in the same direction (Fig. 3); no sys-
tematic variation in K/Rb is observed. Note that
the trends indicate an overall pattern of increasing
arc-like signature from south to north (although
rare MTB-18 have arc-like trace element char-
acteristics [12,30]). For example, MTB-22 has a
mean K/Ba of 37 + 10, significantly lower than

N-MORB (~64) [31] and MTB-18 (74 + 35)

[8,9,14]. It is also useful to compare this and other
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ratios between MTB-18 and MTB-22 and the ad-
jacent parts of the Mariana arc. For example, the
mean K/Ba of Central Island Province (CIP)
which flanks MTB-18 is 31 4 9 while that of the
southern portion of the Northern Seamount Prov-
ince (S-NSP), lying next to MTB-22, is 23 +4
(Fig. 1) [17]. K/Ba for MTB-22 is thus more
similar to that of the arc than either N-MORB or
MTB-18. Similarly, mean Sr/Nd for MTB-22 is
25 4 3, higher than N-MORB (~10) [31] or
MTB-18 (19 + 5) [8,9,14,30} and approaching that
of the Mariana arc CIP (34 +11) and S-NSP
(30 +11) [17]. Ba/La for MTB-22 is 17 4+ 4, much
higher than values for N-MORB of about 3.6 [31]
and MTB-18 of 7.5 + 5 [12] and approaching the
mean Ba/La of 37 4+ 13 and 35 + 15, respectively,
for the CIP and S-NSP of the Mariana arc [17].
The latitudinal variation appears to. principally
manifest enrichment of alkaline earths—and espe-
cially Ba—relative to the alkali metals and to the
REE. The marked enrichment of Ba is a diagnos-
tic feature of arc magmas [32] and is especially
apparent for MTB-22 from latitudinal plots of
Sr/Nd and Ba/Sr (Fig. 3).

The REE patterns for MTB-18 and MTB-22
also indicate enrichments of incompatible ele-
ments to the north. MTB-18 have nearly flat or
slightly LREE-enriched REE patterns, with no
significant enrichment of Ba relative to the LREE
(Fig. 4). In contrast, MTB-22 are enriched in
LREE and depleted in HREE (mean (La/Yb), =
2.0 + 0.4) and are enriched in Ba relative to LREE.
MTB-22 also have a small but invariably positive
Eu anomaly (Eu/Eu* = 1.06 + 0.03). All MTB-22
have negative Ce anomalies (Fig. 5), with mean
Ce/Ce* = 0.89 £ 0.04. This is remarkably similar
to both the Mariana arc CIP and S-NSP, although
the determination of Ce/Ce* for REE patterns
such as those of MTB-22 (i.e., rapid increase over
the LREE) is more uncertain than for more nearly
flat or LREE-depleted patterns. Negative cerium
anomalies are argued to be characteristic of some
arcs, including the Mariana arc [33,34]; MTB-18
REE patterns do not include La, Ce, and Nd so
Ce anomalies for these rocks cannot be evaluated.

Contents of Pb in MTB-22 are higher than
typical for MTB-18; MTB-22 contains 1.5 + 0.2
ppm Pb, compared to 0.74 + 0.25 ppm for nine
samples of MTB-18 [30,35]. Pb/Ce ratios average
0.10 + 0.02, much higher than the upper mantle




ENRICHED BACK-ARC BASIN BASALTS FROM THE NORTHERN MARIANA THROUGH ' 215

J

®-MTB-22
°iMTB- I8

MgO (%)
Fig. 2. Plot of MgO vs. TiO, for MTB-22, MTB-18
[8,9,11,12,26,54], and active Mariana arc [22-25,27-29,33].
Note that MTB-22, at a given MgO content, is intermediate in
TiO, between MTB-18 and active Mariana arc lavas. Correla-
tion coefficient r is for Mariana arc samples.

value of 0.036 [36]. Linear extrapolation of Ce
concentration from Sm and Nd contents of seven
samples of MTB-18 also analyzed for Pb con-
centration [30] suggests Pb/Ce of 0.048 + 0.011.

Pb/Ce for MTB-22 approaches that of 0.22 + 0.09
for Fukujin in the Mariana arc S-NSP [12], the
only Mariana arc volcano which has such data.
Sr-, Nd-, Pb- and O-isotopic compositions are
listed in Table 3. For the most part, 87Sr/%Sr of
MTB-22 showed little variation between leached
and unleached samples. The 87Sr/%Sr for D65
samples decreased by 0.0001 following leaching, a
result-that is consistent with the inference of slight
alteration based on K,O contents of glass and
WR. All other samples showed no analytically
discernible change. We therefore accept the range
observed for the leached samples (0.70309-
0.70352) as representing 'Sr/**Sr of MTB-22
magmas, with the exception of D65 samples. For
these, the 87Sr/gGSr of leached samples is only a
maximum; magmatic values could have been
lower. .
The 87Sr/ %St for leached MTB-22 is generally
higher than that of MTB-18 (0.70264-0.70333 (Fig.
6a), and overlaps the 87Sr/ %Sr of the Mariana arc
CIP (mean = 0.70342 [37]). It is noteworthy that

TABLE 2
Trace element data ' !

Dredge 65 Dredge 66 Dredge 67 Dredge 68 ALVIN-1881

65201 6503 6504 6605 6606 6705 6707 6708 6801 6803 4 7
K(ppm) 4740 4810 4410 2240 2320 4580 4030 3640 4690 4250 3590 4930
Rb 6.8 7.6 6.8 4.5 44 9.3 6.2 6.7 9.2 7.6 6.5 15
Sr 236 256 233 238 239 295 272 206 318 275 272 249
Ba . 120 120 118 120 122 110 134 84.6 101 94 - 104 105
La 6.84 5.83 6.07 5.51 528 8.91 7.02 5.62 8.46 7.75 699 ~ 9.50
Ce 13.8 13.7 13.6 12.1 11.3 19.4 16.9 13.4 174 16.9 15.3 18.3
Nd 9.84 10.1 10.0 8.41 8.09 12.6 13.0 - 944 11.5 10.6 10.1 125
Sm 2.94 2.94 - 2.90 231 2.30 3.41 391 2.58 311 2.85 2.82 3.50
Eu 1.12 1.16 116 0.89 0.90 1.21 143 0.96 1.18 1.09 1.06 1.28
Gd 3.54 3.66 3.61 2.83 2.86 4.03 4.55 319 3.53 3.37 3.18 417
Dy 4.24 418 4.16 312 314 4.24 5.43 3.51 391 3.55 3.66 4.61
Er 2.57 2.66 2.55 1.86 1.86 2.58 342 2.11 2.34 2.18 2.18 2.86
Yb 2.55 2.64 2.57 1.78 1.78 241 3.34 2.07 2.29 2.07 2.18 2.86
Pb 1.42 1.84 1.77 - 1.53 1.59 1.92 1.20 1.38 1.31 1.39 1.52
Elemental ratios .
K/Rb 697 633 649 498 527 492 650 543 510 560 552 657
K/Ba 39.5 40.2 37.4 18.6 18.6 41.6 30.1 43 46.4 452 34.4 471

Ba/La 17.5 20.6 19.4 21.8 23.1 12.3
St/Nd 240 25.4 233 28.3 28.3 23.5
Ce/Ce*  0.83 0.92 0.89 0.89 0.87 0.90
Eu/Fu* 1.07 1.09 1.10 1.07 1.07 1.00
(La/Yb)N® 1.8 1.5 1.6 2.1 2.1 2.5
Pb/Ce 0.10 0.13 0.13 - 0.14

0.082 0.11 0.09

19.1 15.1 119 ° 121 14.9 111

21.0 21.8 27.6 26.0 27.0 19.9
0.92 0.94 0.86 0.92 0.90 0.81
1.04 1.03 1.09 1.08 1.08 1.03
1.4 1.8 2.5 2.5 21 22

0.079 0.078 0.091 0.083

! Ratio of Ce determined interpolated from La and Nd contents.

% Ratio of Bu determined to that interpolated from Sm and Gd contents.

3 Ghondrite-normalized ratio of La to Yb.
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TABLE 3
Isotopic data

R.J. STERN ET AL.

Sample  ®'sr/%gr 2 Nd/ M Nd €nd *pby  Ppb;  PEpp,  s8Q
204 Pb b 204 Pb b 204 Pb b
Unleached Leached : .
65201 0.70319+ /—3 0.70309+ /-3 0.5130364 /—13 +8.1 18.734 15.570 ’ 38.532 -
6503 070323+ /-3 0.70314+/-3 0513007+ /—10 +75  18.727 15.561 38.497 +6.1
6504 0.70321+ /-3 0.70311+ /-3 0.512980+ /—10 +17.0 18.777 15.572‘ 38.544 -
6605 0.70347+ /-3 0.70348+ /-3 0.512934+ /—10 +6.1 - - - -
6606 0.70347+ /-3 0.70346+ /-3 0.512962+ /—10 +6.6 18.718 15.578 38.558 -
6705 0.70334+ /-3 0.70329+ /-3 0.512990+ /—10 +7.2 18.701 15.561 38.446 -
6707 0.70352+ /-3 0.70352+ /-3 0.513024+ /—11 +7.9 18.728 15.577 38.549 -
6708 0.70317+ /-3 - 0.513013+ /—19 +7.7 18.551 15.544 38.319 -
6801 0.70317+ /=3 0.70315+ /-3 0.513018+ /—10 +7.8 18.609 15.547 38.309 -
6803 0.70314+ /-3 0.70315+ /-3 0.513017+ /—-10 +7.8 18.672 15.558 38.384 -
1881-4 0.70317+ /-3 0.70312+ /-3 10.513006+ /—10 +7.5 18.647 15.519 38.351 +5.3
1881-7 0.70312+ /-3 0.70309+ /-3 0.513013+ /—10 +7.7 18.636 15.556 38.405 5.7
* Adjusted to E+A SrCO, *'Sr /%8t = 0.70800.
® Fractionation-corrected via NBS 981; external reproducibility + /~ 0.05% /amu.
5000 g 1400
o K(ppm) o &£ Izoo-_ K/Rb
4000~ & °
e e
3000 goof~ 8 9
-] L o8 °
- 032 8 600} °W‘?\-ﬁ
2000 8 % ©¢g soof o o SE ®
o — o
-8 ° r=0.64 - r=0.15
1000—————+— —— 200 —————— T
'30 200
. Rb(ppm) K/Ba
B o
20 § ° o
[e]
- . 100 S B
10 ’ ® | o ©
L@ ° Eﬁ\g
r-0.27 ° r=065
O T T T o T T T T T T T T T
400 06
o . Ba/Sr g
300 % 0.4 ° X
& - . / :
o
200 /bf 0.2 "o/ 2§ :
r=0.6l 8 r-0.83
100 — Ob————7—— L —
150 40
]
® L Sr/Nd
80 °
100} ) 30} ‘é
]
i ® / i q%) (S}
50 8 Bé 20l- o /03
- ° o/ggo L o 2 oIB°
8 r=0.88 o r=0.45
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LATITUDE (°N)
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the unusual “arc-like” samples of MTB-18 re-
covered from ALVIN dive 1846 are indistinguisha-
ble from MTB-22 [30]. The Nd isotopic composi-
tion of MTB-22 exhibits a modest range, with an
epsilon-Nd between +8.1 and +6.1. This is gen-
erally lower than that for MTB-18 (excepting AL-
VIN 1846), characterized by epsilon-Nd in the
range +9.3 to +11.9 (Fig. 6b), and is indis-
tinguishable from Mariana arc CIP and S-NSP
lavas (epsilon Nd = +6.4 to +8.1; [28,34,38—40]).
A plot of Sr- vs. Nd- isotopic composition (Fig. 7)
shows the transitional nature of the MTB-22 sam-
ples which plot between the fields defined for
MTB-18 and Mariana arc lavas. Note that the
high 87Sr/ %Sr lavas, which plot clearly in the arc
field, were unchanged by leaching.

The Pb isotopic -compositions of MTB-22 are
remarkably homogeneous, especially when com-
pared with the large range of MTB-18 (Fig. 8a, b).
The tight clustering of Pb-isotopic compositions is
similar to that of the Mariana CIP, and the Pb-
isotopic compositions of MTB-22 and CIP lavas

- are difficult to distinguish; the slightly higher del-

ta-8 /4 [41] of MTB-22 serves to best differentiate

study.

these two suites (Fig. 8a, b). MTB-22 have mean
delta-7/4 of 4.2+ 1.3 and delta-8 /4 of 25+ 35,
normal values for mantle-derived melts from this
part of the Pacific [41]. The range of 80 from
MTB-22 glasses (+5.3 to +6.1) is very similar to
that found for MTB-18 (+5.8 to +6.0) [42].

5. Discussion

The basalts from the Mariana Trough at 22° N
have a clear arc signature, much stronger than
those from farther south. In this discussion we
first consider conditions and extent of melting.
We then attempt to characterize the arc compo-
nent and consider what this tells us about the
evolution of the sources of back-arc and arc basalts
and the location of these sources in the mantle.

5.1. Conditions of melting

The major element chemistry of MTB-22 is
very similar to MTB-18, with the exception of
slightly lower TiO, and slightly higher K,O. Be-
cause both TiO, and K,O behave as incompatible
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elements during melting and so should be en-
riched or depleted in tandem, this difference must
reflect relatively minor differences in source com-
positions. This conclusion is strengthened by the
systematic differences observed in trace elements
(e.g., Ba/La and Sr/Nd). Furthermore, MTB-22
and MTB-18 fall on the global depth vs. Na,O
correlation [45] so that the inferences based on
global MORB appear to apply to MTB. MTB-22
has Nag = 2.15 4 0.12, significantly less than that

for two MTB-18 sites listed in [45] (Nag, = 2.63 + -

0.04, 2.77 + 0.44). The analysis developed for

R.J. STERN ET AL.

0.7036
. 0.7034} -
& 8 o
o 0.7032p =
[ o 0o
h_(/) 0.7030}
[:2] o °
0.7028}- ° o %
a) 6? r=0.60
0.7026 T T T T T T T T T T
0.5132
o -2 °
v_Z. @ o
v 0.513I1 - 0\
. 1 o o
© ° o
mz 0.5130— &
<+ 8
i o
b) r=0.62 o
0.5129 T T T T T T T T T T
12 14 16 18 20 22

LATITUDE (°N)

Fig. 6. Latitudinal variations in Sr isotopic compositions (a)

and Nd isotopic compositions (b) in the Mariana Trough. Data

sources are [8,9,13,30,37,42] and this study. Correlation coeffi-
cients r are also given.

global MORB indicates that MTB-22 represents a
slightly higher degree of melting than that of
MTB-18 (F=0.14 vs. 0.11). To a first order, the
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VA =Volcano arc, excluding Iwo Jima. Field labelled Mariana

Arc includes data for Mariana CIP and S-NSP. Field labelled

N-NSP is the northern part of the Northern Seamount Prov-

ince and Iwo Jima. Data sources: 18° N MTB [13,30); Mariana
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conclusions arrived at for the depth and per-
centage of melting of MTB-18 are applicable to
MTB-22. MTB-18 is argued to have formed as a
result of 15% melting of a pyrolitic mantle at
pressures of between 5 and 15 kbar, or about 18 to
50 km depth [9,11]. This is in the range for the
depth of generation of less than 65 km argued for
Mariana arc melts on the basis of REE forward
models [17].

5.2. Characterization of arc component in
MTB-22

Both the Mariana arc and back-arc igneous
systems show strong enrichments in LIL and
LREE from 18° N northwards; these enrichments
are accompanied by corresponding variation in
radiogenic isotopic compositions. In the Mariana
arc, these enrichments culminate in the shoshonitic
rocks of the northern part of the Northern
Seamount Province and Iwo Jima (N-NSP), typi-
fied by very high contents of LIL and LREE, with
(La/Yb), of 10-18, mantle-like Ba/La (15-20),
radiogenic Sr (0.7035-0.7040) and non-radiogenic
Nd (Epsilon-Nd = +2.4 to +5.0) [17,40]. These
chemical and isotopic characteristics of the N-NSP
contrast strongly with the chemical and isotopic
features for the Mariana CIP and have been inter-

It is thus important to know if the arc compo-
nent apparent in MTB-22 is more like the N-NSP
“shoshonitic” source (low Ba/La high (La/Yb),
Endmember II of {17]) or the less enriched arc
sources of the CIP or S-NSP (high Ba/La, low
La/Yb), Endmember I of [17]). These possibili-
ties can be scrutinized by plotting MTB-22 on a
Ba/La vs. (La/YDb), diagram developed for re-
solving the petrogenesis of arc melts (Fig. 9).
Samples of MTB-22 plot between values typical of
N-MORB and those of the source region for
Mariana arc CIP and S-NSP lavas. The Nd-Sr
isotopic data (Fig. 7) are best interpreted as result-
ing from mixing between mantle sources responsi-
ble for MORB and CIP-type melts, and the Pb
isotopic data (Fig. 8) require a very large compo-
nent of a CIP-type source. The fact that the MTB-
22 data extends to a possible mixing curve be-
tween N-MORB and the shoshonitic Endmember
IT source is intriguing; sampling farther north is
required to better evaluate whether or not the
shoshonitic source is involved. We conclude from
these data that, for the most part, the arc compo-
nent in MTB-22 is that of typical, mature arcs
such as the Mariana CIP or the geographically-as-
sociated S-NSP. Certainly the chemical and iso-
topic variations documented along the Mariana
arc and the distinctions between this and other
arc/back arc systems emphasizes the need to sys-
tematically compare back arc data with the associ-
ated volcanic arc. '

5.3. Proportion of the arc component
The next question that needs to be answered is:
“How much of the arc component is involved in
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Fig. 9. Plot of Ba/La vs. (La/Yb),, showing the mixing
trajectory calculated for Mariana arc lavas [17] and new trajec-
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arc sources. Tick marks on the mixing curves between End-
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Endmember #1 (Metasomatized MORB-type mantle: high
Ba/La; low La/Yb) involved in the mixture; tick marks
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La/Yb) dominates” source of the N-NSP shoshonites. Also
shown is the field occupied by lavas from the Mariana arc CIP
and S-NSP. Note that samples of MTB-22 lie between normal
MORB and Endmember #1. Endmember #1 has Ba/La = 80
and (La/Yb),=0.5. Endmember #2 has Ba/La =15 and
(La/Yb),=20 [17]. MORB is modelled with Ba/La and
La/Yb from [31]; all three endmembers are assumed to have
equal Yb contents.

MTB-22 lavas?”. This problem was examined for
MTB-18, where a strong case for binary mixing of
melts has been made [12,13,30]; these investigators
argued that one endmember was MORB and the
other was arc tholeiite. We note that the data do
not allow one to distinguish between source mix-
ing and melt mixing. This is because while Sr and
Sm contents will be much greater in melts relative
to sources, the Sm contents of these sources will
be similar, as will be the case for their melts; also
the Ba/Sm of arc melts and sources and MORB
melts and sources will be similar [32]. Volpe et al.
[13] developed a model in which MTB-18 melts
result from 15-30% arc melt mixed with MORB
melt; this model is equally appropriate for 15-30%
source mixing. The same approach shows that
MTB-22 reflect a much larger proportion, from 50
to 90%, of arc source or melt mixed with 10 to
50% MORB source or melt (Fig. 10). Basalts from

R.J. STERN ET AL.

the Mariana Trough north of 22°30'N (KKO01,
KKO02; Fig. 1) have up to 1.04% K,O and may
manifest an even higher percentage of the arc
component [16]—or the shoshonitic source.

As in all models, the calculated proportions are
only approximations. The point labelled “Active
Mariana arc” in Fig. 10 does not reflect the great
variation in Mariana arc compositions. Regardless
of the details of the model, MTB-22 are in many
respects indistinguishable from Mariana arc lavas.
Table 4 compares representative samples of MTB-
22 with those from the adjacent portion of the
Mariana arc. While there are subtle differences
between the arc and back-arc samples (e.g., higher
Si0,, A1,0, and Fe,0;, lower MgO in the arc),
much of the variation may be attributed to in-
creased fractionation of the arc lavas. If samples
identical to MTB-22 were recovered from the arc,
these would be well within the range of chemical
and isotopic compositions expected for arc lavas,
except that they are less fractionated. The point is
that the chemical and isotopic compositions of
MTB-22 are dominated by the arc component and
the difficult problem is to identify the MO
component. B

5.4. Source mixing or metasomatism?

The next problem to address is how the arc
characteristics are imposed on the melt source of
MTB-22. There are two end-member possibilities:
(1) mixing between two chemically distinct mantle
sources (or melts therefrom), one of which has
strong arc chemical affinities; and (2) metasoma-
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TABLE 4 .
Comparison of arc and MTB-22 chemical and isotopic char-
acteristics

ARC MTB-22

NW Uracas Eifuku D6605 1881-4
D19-3-10  D31-2-2

SiO, 521 52.5 491 524
TiO, 0.73 1.01 0.80 101
AlLO, 18.4 19.9 16.0 17.3
Fe,OF 10.6 11.3 8.53 8.52
MgO 5.60 372 10.1 6.50
Na,O 212 2.83 2.04 2.86
K,0 0.39 1.31 0.28 0.46
Rb(ppm) 73 25 45 6.5
Sr © 265 706 238 272
Ba 155 448 120 104
La 2.54 214 5.51 6.99
Yb 1.85 1.90 1.78 218
Sr/Nd 52 33 28 27
Ba/La 61 21 20 14
K/Ba 23 24 19 34
(La/Yb)y 092 7.5 2.1 2.1
K/Rb 496 422 498 552
87Sr /%81 0.70338 070348  0.70348  0.70312
€na 77 * - 61* 7.5 *

* From the northernmost part of the Mariana CIP and S-NSP
[17,23,36].

tism, by subduction-related fluids, of a single,
chemically homogeneous source. These possibili-
ties are similar to those advanced to explain the
evolution of the source of Mariana arc melts
[17,33,34,40]. All investigators agree that a slab-
derived component is needed to explain the high
Ba/La, low (La/YDb), source (Endmember I of
[17]; Fig. 9); disagreement concerns whether or
not mixing followed source metasomatism. In the
case of the active Mariana arc, trace element and
radiogenic isotopic data indicate that metasoma-
tism of a MORB-like source produced a high
Ba/La but LREE-depleted “Endmember I’ which
then mixed with low Ba/La, LREE-enriched
“Endmember II” [17,40]. The observation that
MTB-22 data plot between MORB (to the high

La/Yb side) and extend towards “Endmember I

(Fig. 9) can be interpreted as resulting either from
melting of a MORB source that was subjected to
varying degrees of metasomatism by Ba-rich fluids
or by melting of a mixture of MORB and “En-
dmember I” sources. The latter interpretation is
similar to that proposed for MTB-18, which has
an arc-like component ascribed to old oceanic

lithosphere metasomatized by a previous subduc-
tion episode, with mixing between this and a
MORB source being responsible for MTB-18 [30].

The models in Figs. 9 and 10 use the subduc-
tion-related (metasomatic?) enrichments of Ba to
tag the arc source and monitor its mixing with
MORB in the evolving BAB. This approach is
sensitive to any subduction component but is in-
sensitive to any differences between the arc and
back-arc mantle that may relate to pre-existing
mantle heterogeneity, previous melt extraction,
variable residual mineralogies, etc. Consequently
this approach must ultimately be combined with
HFSE, compatible trace element, and REE di-
agrams to distinguish between the models sketched
in Fig. 11. This approach has been used to evaluate
the sources involved in generating Sumisu Rift
basalts ands to conclude that differences between
arc and back-arc include those related to and
independent of subduction, and invoke mantle
mixing as a primary mechanism [57].

For MTB-22, the predominance of the arc com-
ponent is consistent with either the metasomatic
or the mixing model. In the metasomatic model,
the proximity of the rift to the arc places it’s
mantle source close to the origin of slab-derived
metasomatic fluids, while for the mixing model,
the arc component results from the arc source
being intimately juxtaposed with the zone of man-
tle upwelling beneath the rift. For both models,
the arc signature should diminish as the back-arc
basin matures and widens, and the BAB source
becomes increasingly separated from the subduc-
tion zone and the arc source.

Further sampling that shows the scale and regu-
larity of the arc/back-arc transition with latitude
may provide such insight. We expect that if the
arc component has been imposed by metasoma-
tism related to present subduction, there should be
a gradual increase northward in this component,
corresponding to the closer superposition of rift
and subduction zone. If, however, the dominant
process is mixing of older sources or melts, we
expect that the trend of increasing arc component
to the north may be more erratic, characterized by
ridge segments erupting MTB-18 and MTB-22 in
close proximity. We note that a small segment of
the ridge at 18°N erupts basalts with chemical
and isotopic compositions that are much more like
MTB-22 than MTB-18 (ALvIN Dive 1846). These
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tion becomes isolated from the effects of subduction-related
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%MAGMA CONDUITS

are found along a ridge segment that predomi-
nantly produces typical MORB-like MTB-18. This
scale of heterogeneity is much more consistent
with a model of source- or melt-mixing than it is
with one of metasomatism. For this reason we
prefer the model of source- or melt-mixing over
one of variable metasomatism as being the most
important control of MTB-22 compositions.

R.J. STERN ET AL.

3.5. Implications for the magmatic evolution of
back-arc basins )

The preceding data and interpretations lead us
to conclude that the young Mariana Trough
erupted basalts with strong arc affinities. In this
section we examine whether or not this is a gen-
eral result, based on geochemical and isotopic
studies of other BAB. '

There are several other BAB systems that show
a strong arc signature in their early evolutionary
stages. Hawkins and Melchior [9] argued that the
northern Lau Basin shows a compositionally zoned
crust, with a decrease in the proportion of the arc
component observed with widening of the basin.

The crust that formed just after arc rifting has .

strong arc affinities compared to that which
formed later, as the BAB widened and matured.
The identification of remarkably arc-like lavas
from the Valu Fa ridge in the southern Lau Basin
[46], where the active axis of the BAB is im-
mediately adjacent to the arc, strengthens their
argument. A corresponding zonation of the
Mariana Trough has not been identified, but this
may be due to inadequate sampling of the early
BAB crust. The data for MTB-22 does indicate,
however, that the narrow parts of the Mariana
Trough are dominated by arc-like basalts, and
leads us to predict that when better sampling of
the older crust in the Trough is accomplished, it
will show a strong arc chemical signature.

The Bransfield Strait, Antarctica, is interpreted
as the site of a very early stage BAB [47]. Basalts
erupted from three islands in this rift have incom-
patible element concentrations that are inter-
mediate between arc tholeiites and calc-alkaline
lavas. The Bransfield Strait lavas are significantly
enriched in Ba in particular and depleted in HFSC
such as Ti, Zr, Nb, and Y. These characteristics
are interpreted as typical of island arc tholeiite
suites and ascribed [47] to the “...complex nature
of the mantle under an active island arc combined
with complex melting relationships attending the
initial stages of back-arc spreading”.

Rifting of the New Hebrides arc has formed the
Coriolis Trough and the Northern Basin, interpre-
ted as initial stage rifts in the development of a
back-arc basin [48]. Futuna Island, a volcano that
formed during intial rifting, is composed of basalts
and basaltic andesites that have all the petro-
graphic and geochemical characteristics of arc
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lavas. This igneous succession was interpreted as

indicating that the earliest stages in back-arc

evolution result in the eruption of arc-like magmas
[49]. v

The Sumisu Rift (SR) is an excellent example
of the early stages in the evolution of BAB [50].
SR basalts have major element compositions in-
distinguishable from basalts erupted from mature
BAB [50-52]. The trace elements for SR basalts
show only a slight arc signature; in particular, the
enrichments in Ba found for MTB-22 are not
observed [50-52}. If correct, this interpretation
means that the model constructed for the Mariana
Trough is not globally applicable. This is the
Sumisu Rift-Mariana Trough paradox: Sumisu
Rift lavas erupted 20-40 km behind the Izu
volcanic front show only a small arc imprint
whereas MTB-22 basalts, erupted 50-100 km be-
hind the volcanic front, show a very large one.

The reasons behind the apparent paradox may
be both complex and important. The transition
from arc to back-arc is also the transition from a
more to a less hydrous melting environment and
so also involves different degrees or conditions of
melting and different residual mineralogies and /or
fractionating assemblages [50-52,57]. The di-
minishing volatile content of the back-arc pre-
sumably accompanies a diminishing subduction
signature in trace element and isotopic character-
istics. These effects will be superimposed on those
deriving from the pre-existing chemistry of the
sub-arc mantle and any new material introduced
to the region through rifting as well as the mixing
between them. Different elements will respond to
different aspects of the transition: major elements
will be most sensitive to conditions of melting and
to fractionating assemblages. LIL elements (Cs,
Rb, Ba) will reflect the hydrous metasomatic com-
ponent, both old and new. In contrast, HFSE and
REE may reflect prior melting history and com-
position of the sub-arc mantle as well as mixing
proportions.

The contrasts between MTB-22 and SR basalts

raise the possibility that the transition from arc to

back-arc may not be spatially or temporally iden-
tical in different regions. In this context, the chem-
istty of Izu and Mariana arc “cross-chain
seamounts” is noteworthy [50,53]. These cross-
chains are part of the active arc but erupt lavas
that are distinct from the more voluminous mag-

mas erupted along the volcanic front in having
stronger enrichments in LREE and less relative
enrichments in Ba [16,50]. The Kasuga seamounts
in the Mariana arc are the best studied cross-chain;
geochemical and isotopic studies suggest that these
lavas are derived from a mantle source that is very
different from that responsible for lavas erupted
along the magmatic front of the CIP and S-NSP
(i.e., insignificant proportion of “Endmember I”
[17]). The mantle source responsible for both SR
and Mariana arc cross-chains has characteristics
that may be appropriate to be involved in the
generation of SR basalts (i.e., LREE enrichment,
low Ba/REE).

6. Conclusions.

Basalts erupted near the northern terminus of
the Mariana Trough bear strong chemical and
isotopic similarities to the composition of Mariana

-arc lavas, in particular to those erupted at similar

latitude along the arc. We propose that this arc
component may become involved either by mixing
of arc and MORB mantle sources or by variable
metasomatism of a MORB-like mantle by subduc-
tion-related metasomatic fluids. The evolution of
basalt compositions in the Mariana Trough re-
flects the progressively greater role of the MORB
source, either as a result of physical isolation of
the arc source from the zone of mantle upwelling
beneath the rift or by the progressive separation of
this zone from the site of subduction-related
metasomatism (Fig. 11). This model is consistent
with magmatic evolution inferred from several
other incipient and mature back-arc basin sys-
tems, with the possible exception of the Sumisu
Rift. Consideration of more heterogeneous arc
sources may reconcile this paradox.
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Appendix 1—petrographic descriptions

65201: Vesicular, sparsely phyric basalt (~ 2%
microphenocrysts of CPX and PLAG, ~20%
irregular vesicles). Glass is devitrified. 6503:
Sparsely phyric basalt (~ 2% phenocrysts and mi-
crophenocrysts of CPX and PLAG). 6504:
Sparsely phyric basalt (~ 2% phenocrysts and mi-
crophenocrysts of CPX and PLAG). 6605:
Porphyritic basalt (~ 9% OL and ~ 10% PLAG
phenocrysts and microphenocrysts), occasionally
glomerophyric. ~ 10% small vesicles; abundant
glass. 6606: Porphyritic basalt (~15% OL and
~10% PLAG phenocrysts and microphenocrysts;
minor CPX megacrysts), occasionally glomero-
phyric. ~10% small vesicles; some glass. 6705:
Aphyric basalt, with PLAG and CPX microphen-
ocrysts; ~20% vesicles. 6707: Aphyric basalt;
rare PLAG and CPX microphenocrysts; ~ 15%
vesicles. 6708: Porphyritic basalt (10% OL, ~ 3%
CPX, ~5% PLAG). Moderately vesicular; abun-
dant glass. 6801: Porphyritic basalt (~5% OL,
~ 10% PLAG), ~ 30% vesicles. 6803: Porphyritic
basalt (~ 10% OL, ~ 5% PLAG), > 30% vesicles,
abundant glass. 1881-4: Sparsely phyric basalt
(~5% OL and ~10% PLAG microphenocrysts),
~ 15% vesicles. Abundant fresh glass on margins.
1881-7: Sparsely phyric basalt (~10% PLAG,
~3% OL, ~1% CPX microphenocrysts) ~ 20%
vesicles. Hyalopilitic groundmass with abundant
glass.
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