2.1. Introduction.

Finite automata are the simplest model of computation: comput. very limited, yet very useful in many diff. areas incl. compiler construction, switching theory, biology, comm. protocols

Q: How to model systems as finite-state machines?

Ex: How to describe behavior of a child?

There are 3 states: happy (H), neutral (N), unhappy (U).

Two types of inputs: candy (C) and medicine (M)
Design of the controller for an automatic door

- Door is in one of two states:
 - OPEN, CLOSED
- Controller senses:
 - Front pad occupied: FRONT
 - Rear pad occupied: REAR
 - Both pads occupied: BOTH
 - Neither pad occupied: NEITHER

<table>
<thead>
<tr>
<th>FRONT</th>
<th>REAR</th>
<th>BOTH</th>
<th>NEITHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSED</td>
<td>OPEN</td>
<td>CLOSED</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>OPEN</td>
<td>CLOSED</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

Q. What is an initial state?

Q. What are accept/final states?

Q. What are input sequences leading from initial to an accept state?
2.2. Basic Definitions

Consider e.g. the following transition diagram:

- **states** are \(q_1, q_2, q_3 \) : \(\{ q_1, q_2, q_3 \} = Q \)
- **input symbols** are \(0, 1 \) : \(\{ 0, 1 \} = \Sigma \)
- **labeled edges** are **transitions**
- **start / initial state** is \(q_1 \)
- **accept / final state(s)** is \(q_2 \)

The set of transitions constitutes the **transition function** denoted by \(\delta \):

If \(q \) is current state and \(a \) is current input, \(\delta(q, a) \) is next state. That is

\[\delta : Q \times \Sigma \rightarrow Q \]

Def. A **finite automaton (FA)** is a 5-tuple

\[M = (Q, \Sigma, \delta, q_0, F) \]

where

1. \(\Sigma \) is **input alphabet**
2. \(Q \) is **finite set of states**
(3) $\delta: Q \times \Sigma \rightarrow Q$ is transition function

(4) $q_0 \in Q$ is start/initial state

(5) $F \subseteq Q$ is set of final states

Ex. Consider FA M_1:

$Q = \{ q_1, q_2, q_3 \}$
$\Sigma = \{ 0, 1 \}$
q_1 is start state
$F = \{ q_2 \}$

Physical representation:

```
read-only input tape: [w_1, w_2, ..., w_i, ..., w_n]

finite control
```

M scanning $w_i = a$ in state q moves head right and enters state q'

$\iff \delta(q, a) = q'$

$L(M)$ denotes the language accepted by M.

$w \in \Sigma^*$ is accepted if M starting with q_0 enters some $q_f \in F$ after proc. w.
Ex. \(L(M_1) = \) set of bin. strings s.t. the number of 0's following the last 1 is even.

Ex. \(L(M) = \) set of bin. strings ending in 1

Ex. \(L(M) = \) set of bin. strings ending in 0

Ex. An FA to accept bin. strings beginning & ending with same symb.

Ex. \(L(M) = \) set of bin. strings containing at least a 0 (or having 0 as substring)
Ex. M reads symbols from $\Sigma = \{0, 1, 2, <\text{reset}>\}$ and counts modulo 3.

Ex. Counting modulo k, $k \geq 1$ is fixed.

$\Sigma = \{0, 1, 2, \ldots, k-1, <\text{reset}>\}$

$Q = \{q_0, q_1, \ldots, q_{k-1}\}$

For $0 \leq j \leq k-1$:

$\delta(q_i, 0) = q_i$

$\delta(q_i, 1) = q_{j+1} \mod k$

$\delta(q_i, k-1) = q_{j+k-1} \mod k$

$\delta(q_i, <\text{reset}>) = q_0$.

For $k = 4$:

Ex.

\[
\begin{array}{c}
q_0 \\
\text{<reset>}
\end{array}
\quad
\begin{array}{c}
q_1 \\
3/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_2 \\
2/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_3 \\
0
\end{array}
\]

Ex.

\[
\begin{array}{c}
q_0 \\
\text{<reset>}
\end{array}
\quad
\begin{array}{c}
q_1 \\
3/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_2 \\
2/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_3 \\
0
\end{array}
\]

Ex.

\[
\begin{array}{c}
q_0 \\
\text{<reset>}
\end{array}
\quad
\begin{array}{c}
q_1 \\
3/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_2 \\
2/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_3 \\
0
\end{array}
\]

Ex.

\[
\begin{array}{c}
q_0 \\
\text{<reset>}
\end{array}
\quad
\begin{array}{c}
q_1 \\
3/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_2 \\
2/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_3 \\
0
\end{array}
\]

Ex.

\[
\begin{array}{c}
q_0 \\
\text{<reset>}
\end{array}
\quad
\begin{array}{c}
q_1 \\
3/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_2 \\
2/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_3 \\
0
\end{array}
\]

Ex.

\[
\begin{array}{c}
q_0 \\
\text{<reset>}
\end{array}
\quad
\begin{array}{c}
q_1 \\
3/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_2 \\
2/<\text{reset}>
\end{array}
\quad
\begin{array}{c}
q_3 \\
0
\end{array}
\]

Ex. Counting modulo k, $k \geq 1$ is fixed.

$\Sigma = \{0, 1, 2, \ldots, k-1, <\text{reset}>\}$

$Q = \{q_0, q_1, \ldots, q_{k-1}\}$

For $0 \leq j \leq k-1$:

$\delta(q_i, 0) = q_i$

$\delta(q_i, 1) = q_{j+1} \mod k$

$\delta(q_i, k-1) = q_{j+k-1} \mod k$

$\delta(q_i, <\text{reset}>) = q_0$.

For $k = 4$:

Ex. Counting modulo k, $k \geq 1$ is fixed.

$\Sigma = \{0, 1, 2, \ldots, k-1, <\text{reset}>\}$

$Q = \{q_0, q_1, \ldots, q_{k-1}\}$

For $0 \leq j \leq k-1$:

$\delta(q_i, 0) = q_i$

$\delta(q_i, 1) = q_{j+1} \mod k$

$\delta(q_i, k-1) = q_{j+k-1} \mod k$

$\delta(q_i, <\text{reset}>) = q_0$.

For $k = 4$:

Ex. Counting modulo k, $k \geq 1$ is fixed.

$\Sigma = \{0, 1, 2, \ldots, k-1, <\text{reset}>\}$

$Q = \{q_0, q_1, \ldots, q_{k-1}\}$

For $0 \leq j \leq k-1$:

$\delta(q_i, 0) = q_i$

$\delta(q_i, 1) = q_{j+1} \mod k$

$\delta(q_i, k-1) = q_{j+k-1} \mod k$

$\delta(q_i, <\text{reset}>) = q_0$.

For $k = 4$:

Ex. Counting modulo k, $k \geq 1$ is fixed.

$\Sigma = \{0, 1, 2, \ldots, k-1, <\text{reset}>\}$

$Q = \{q_0, q_1, \ldots, q_{k-1}\}$

For $0 \leq j \leq k-1$:

$\delta(q_i, 0) = q_i$

$\delta(q_i, 1) = q_{j+1} \mod k$

$\delta(q_i, k-1) = q_{j+k-1} \mod k$

$\delta(q_i, <\text{reset}>) = q_0$.

For $k = 4$:

Ex. Counting modulo k, $k \geq 1$ is fixed.

$\Sigma = \{0, 1, 2, \ldots, k-1, <\text{reset}>\}$

$Q = \{q_0, q_1, \ldots, q_{k-1}\}$

For $0 \leq j \leq k-1$:

$\delta(q_i, 0) = q_i$

$\delta(q_i, 1) = q_{j+1} \mod k$

$\delta(q_i, k-1) = q_{j+k-1} \mod k$

$\delta(q_i, <\text{reset}>) = q_0$.

For $k = 4$:
Formal def. of computations.

\[M = (Q, \Sigma, \delta, q_0, F) \]

Input string \(w = w_1 \ldots w_n \), \(w_i \in \Sigma \)

\[w_1 \overline{\hspace{1cm}} w_i \overline{\hspace{1cm}} \ldots \overline{\hspace{1cm}} w_n \]

\[r_0 \rightarrow r_1 \rightarrow \ldots \rightarrow r_i \rightarrow r_{i+1} \rightarrow \ldots \rightarrow r_n \]

\(M \) accepts \(w \) if there exist states \(r_0, r_1, \ldots, r_n \) s.t.

1. \(r_0 = q_0 \)
2. \(r_n \in F \)
3. \(\delta(r_i, w_{i+1}) = r_{i+1} \) \(\forall i = 0, 1, \ldots, n-1 \)

A language \(L \subseteq \Sigma^* \) is regular if \(L = L(M) \) for some FA \(M \)

\[L(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \} \]
Designing FAs

Assuming you have a finite amount of memory, try to come up with a strategy to accept the given language.

Ex. An FA to accept bin. strings containing an even number of 1's

Strategy: Count modulo 2 the number of 1's read \((0 = \text{even}, 1 = \text{odd})\)

\[q_0 \overset{0}{\rightarrow} q_1 \]

\[q_0 \equiv 0 \mod 2 \]

\[q_1 \equiv 1 \mod 2 \]

Ex. An FA to accept strings over \(\{a, b\}\) containing aba as substring

Strategy: Keep searching for pattern aba:

\[q_a \overset{\text{just seen } a}{\rightarrow} \]

\[q_{ab} \overset{b}{\rightarrow} \]

\[q_{aba} \overset{a}{\rightarrow} \]

\[q_{aba} \overset{a}{\rightarrow} \]

\[q_{aba} \]
Ex. An FA to accept strings over \{a, b\} ending in aa

Strategy. As before:
- \(q_a\) = just seen a
- \(q_{aa}\) = just seen aa

So at \(q_{aa}\) if we read \(a\), it's ok; otherwise if we read \(b\), start over.

Ex. An FA to accept \(\{a^n b^m c^k | n, m, k \geq 0\}\)

i.e., strings of form \(a^n b^m c^k\)

where a block could be empty.

Strategy. As before:
- \(q_a\) = we're within block of a's processing a's
- \(q_b\) = within block of b's
- \(q_c\) = within 3rd block of c's
- \(q_r\) = rejecting state

If we're already in \(q_c\) and a is read, then reject.
Ex: What if \(L = \{ a^n b^m c^k \mid n, m, k > 0 \} \) ?

Strategy: As before, but we have to make sure that the blocks are non-empty. So we accept only if we've read at least an \(a, a b \) and a \(c \).

Ex: An FA to accept odd-length strings over \(\{a, b\} \) containing 2 b's

Strategy: We have to maintain 2 types of information:

1. Count modulo 2 the number of symbols read so far, and
2. Count the number of b's read (0 or 1 or 2 or more)
Ex: An FA to accept strings beginning and ending with `aa`
Ex: An FA to accept odd-length strings over \(\{a, b\} \) containing \text{ab} as substring.

Strategy: count length modulo 2 and at the same time search for substring \text{ab}.

Ex: An FA to accept strings over \(\{a, b\} \) s.t. every occurrence of "a" is followed by a "b."

1 and 3 are equiv. and can be merged.
The Regular Operations.

Let $A, B \subseteq \Sigma^*$ be languages.

The regular operations on languages are:

- **Union:** $A \cup B = \{ x \in \Sigma^* | x \in A \lor x \in B \}$
- **Concatenation:** $AB = \{ xy | x \in A, y \in B \}$
- **Kleene closure:**
 \[
 A^* = \bigcup_{n=0}^{\infty} A^n
 = \{ x_1 \ldots x_n | n \geq 0, x_1, \ldots, x_n \in A \}
 \]
2.3. **Nondeterministic Finite Automata**

In an FA $M = (Q, \Sigma, \delta, q_0, F)$ given $q \in Q$, $a \in \Sigma$, the next state is uniquely determined: $\delta(q, a)$, since $\delta: Q \times \Sigma \rightarrow Q$ is a function.

Thus, M is deterministic.

We call it a **deterministic finite automaton** (DFA for short)

In a nondeterministic finite automaton (NFA) N, given $q \in Q$ and $a \in \Sigma$, there are several choices for the next state, i.e., $\delta(q, a)$ is a finite subset of Q:

$$\delta(q, a) = \{ p_1, \ldots, p_k \} \subseteq Q$$

In an NFA, we also allow ϵ-transitions:

$$q \xrightarrow{\epsilon} q'$$

i.e., N can make a transition from q to q' without consuming any input symbol.
Ex. Consider NFA $N,$:

\[
\begin{align*}
\delta(q_1,0) &= \{q_3\} \\
\delta(q_2,\varepsilon) &= \{q_3\} \\
\delta(q_1,1) &= \{q_1, q_2\} \\
\delta(q_3,0) &= \emptyset
\end{align*}
\]

Q. What is a computation on an NFA?

Consider e.g. input string $w = 11010$.
Possible computations are:

There are 3 accepting computations.
If there is an accepting computation of NFA N on input w, w is declared accepted by N.

Thus N, accepts bin. strings containing 11 or 101 as substring.
Ex: \[N_2 \xrightarrow{01} q_1 \xrightarrow{01} q_2 \xrightarrow{01} q_3 \xrightarrow{01} q_4 \]

Q. What does \(N_2 \) accept?
A. Bin. strings in which the 3rd symb. from the right is 1.

Q. Can we construct an equiv. DFA (to accept the same language)?

Strategy: While processing input string maintain a window of size 3 that contains the 3 most recently read input symbols:

Thus, initial window contains \(\epsilon \) and final window contains \(w_{n-2} w_{n-1} w_n \)

Construction of DFA:
States are \(q_v \) where \(v \) is a string of length \(\leq 3 \) corresponding to window content: \(q_\epsilon \) is init. state, \(q_{1ab} \), \(a, b \in \{0,1\} \) are final states.
Thus, the DFA is:

Q. Can we construct a smaller DFA?
A. Yes. We can make q_{0001} initial state and delete q_v, where $|V| \leq 2$. The resulting DFA accept the same language.
L(M) = \{ 0^k \mid k \text{ is multiple of 2 or 3} \}

Equiv. DFA is:

States are q_{ij} where:
- \(i \) is used to count modulo 2
- \(j \) modulo 3

Observe: \(\delta(q_2, a) = \{ q_2, q_3 \} \)

\(\delta(q_1, a) = \emptyset \); \(\delta(q_1, \varepsilon) = \{ q_3 \} \)

Letting \(\Sigma_e := \Sigma \cup \{ \varepsilon \} \),

\(\delta: Q \times \Sigma_e \rightarrow 2^Q \) (or \(P(Q) \))

i.e., \(\delta(q, a) = \{ p_1, \ldots, p_k \} \subseteq Q \) for \(q \in Q, a \in \Sigma_e \)
Def. An NFA is a 5-tuple
\[M = (Q, \Sigma, \delta, q_0, F) \]

where:
- \(Q \) is a finite set of states
- \(\Sigma \) is input alphabet
- \(q_0 \in Q \) is initial state
- \(F \subseteq Q \) is set of final states
- \(\delta : Q \times \Sigma \varepsilon \rightarrow 2^Q \) is transition function.

Ex. Consider NFA \(M \) above

\[\begin{array}{c|ccc}
 & a & b & e \\
\hline
q_1 & \emptyset & \{q_2, q_3\} & \{q_3\} \\
q_2 & \{q_2, q_3\} & \{q_3\} & \emptyset \\
q_3 & \{q_3\} & \emptyset & \emptyset \\
\end{array} \]

An input string \(w \in \Sigma^* \) is accepted by \(M \) if \(w \) can be written as
\[w = y_1 y_2 \ldots y_m \], \(y_i \in \Sigma \)

such that there exist states \(r_0, r_1, \ldots, r_m \in Q \) with

1. \(r_0 = q_0 \)
2. \(r_m \in F \)
3. \(r_{i+1} \in \delta(r_i, y_{i+1}) \) for all \(i = 0, \ldots, m-1 \)

\[\begin{array}{cccccc}
 r_0 & \xrightarrow{y_1} & r_1 & \xrightarrow{y_2} & \ldots & r_i & \xrightarrow{y_{i+1}} & r_{i+1} & \ldots & \xrightarrow{y_m} & r_m \\
 & & & \& \& & \& & \& \& & \& & \& \\
 \underbrace{r_i} & \xrightarrow{\delta(r_i, y_{i+1})} & \underbrace{r_{i+1}} \\
\end{array} \]

\(L(M) = \text{language accepted by } M \)
Equivalence of NFAs and DFAs

Theorem. \(L = L(M) \) for some DFA \(M \)

\(\iff \) \(L = L(N) \) for some NFA \(N \).

Proof:

"\(\Rightarrow \)" obvious since every DFA is an NFA

(that has a unique choice for next state

and no \(\varepsilon \) transitions)

"\(\Leftarrow \)" Given \(N = (Q, \Sigma, \delta, q_0, F) \) we want

to construct an equiv. DFA.

Idea. Assume for the time being that

\(N \) has no \(\varepsilon \) transitions. We construct

an equiv. DFA

\(M' = (Q', \Sigma, \delta', q'_0, F') \) s.t.

on any input \(w \in \Sigma^* \), \(M' \) stores in its

finite control all states reached in \(N \)

after processing \(w \), i.e.,

\[
N: \begin{array}{c}
\text{\(q_0 \)}
\end{array} \quad \text{w} \quad \begin{array}{c}
\text{S}
\end{array} \quad \text{S \in Q}
\]

Then in \(M' \):

\[
\begin{array}{c}
\text{S}
\end{array} \quad \text{w} \quad \begin{array}{c}
\text{S}
\end{array}
\]

i.e., \(S \) is a state in \(M' \).
Ex. Consider NFA

and input 11010. The computations are:

So the computation of equiv. DFA on

Thus the equiv. DFA is

for example

\[
\delta'(\{q_1, q_2\}, 1) = \{q_1, q_2, q_3\}
\]

\[
\delta'(\{q_1, q_2, q_3\}, 0) = \{q_1, q_3, q_4\}
\]

\[
\delta'(\{q_1, q_2, q_3\}, 1) = \{q_1, q_2, q_4\}
\]
Construction of $M' = (Q', \Sigma, \delta', q_0', F')$

1. $Q' = 2^Q$
2. $q_0' = \{ q_0 \}$
3. $F' = \{ S \in Q' \mid S \cap F \neq \emptyset \}$
4. $\delta'(S, a) := \bigcup_{s \in S} \delta(s, a)$

Taking e-transitions into account

For $S \in Q'$ define the e-closure of S by:

$E(S) := \{ q \in Q \mid q$ can be reached from some $s \in S$ by ≥ 0 e-transitions $\}$

$= \{ q \in Q \mid q$ can be reached from some $s \in S$ without processing any input symbol $\}$

$= \{ q \in Q \mid$ there is a path labeled e from some $s \in S$ to q $\}$
Define

\[
\begin{align*}
q_0'' &:= E(\{q_0\}) \\
\delta''(S, a) &:= E(\delta'(S, a)) \\
&= \bigcup_{s \in S} E(\delta(s, a))
\end{align*}
\]

Then the equiv. DFA \(M \) is

\[
M = (Q', \Sigma, \delta'', q_0'', F')
\]

Illustration:

![Diagram showing the subset construction](diagram.png)

This construction is called the subset construction.
\[q_0'' = E(\{1,3\}) = \{1,3\} \]
\[\delta''(\{1,3\}, a) = E(\delta(1,a) \cup \delta(3,a)) = E(\{1\}) = \{1,3\} \]
\[\delta''(\{1,3\}, b) = E(\delta(1,b) \cup \delta(3,b)) = E(\{1,2\}) = \{1,2\} \]

\[M: \]

\[\delta''(\{2,3\}, a) = E(\delta(2,a)) = E(\{2,3\}) = \{2,3\} \]
\[\delta''(\{2,3\}, b) = E(\delta(2,b)) = E(\{3\}) = \{3\} \]
\[\delta''(\{3\}, a) = E(\delta(3,a)) = E(\{1\}) = \{1,3\} \]
\[\delta''(\{3\}, b) = E(\delta(3,b)) = E(\emptyset) = \emptyset \]
\[\delta''(\{2,3\}, a) = E(\delta(2,a) \cup \delta(3,a)) = E(\{2,1,3\}) = \{2,1,3\} \]

Note that \{1,3\}, \{1,2,3\} cannot be reached from \{1,3\}, and hence don't appear in M.
The equiv. DFA M is:

\[\delta''(q_3, 0) = E(\delta(q_3, 0)) = E(q_3) = \{q_3\} \]
\[\delta''(q_3, 1) = E(\delta(q_3, 1)) = E(q_9, q_3) = \{q_9, q_3\} \]
\[\delta''(q_9, q_3, 3, 0) = E(\delta(q_9, 0) \cup \delta(q_3, 0) \cup \delta(q_3, 0)) \]
\[= E(\{q_9, q_3\}) = \{q_9, q_3\} \]
\[\delta''(q_9, q_3, 3, 1) = E(\delta(q_9, 1) \cup \delta(q_9, 1) \cup \delta(q_3, 1)) \]
\[= E(\{q_9, q_3, q_4\}) = \{q_9, q_3, q_4\} \]

A smaller DFA:

(The 3 final states of M are equiv. & can be merged)

Cor: \(L \) is regular \(\iff \) \(L = L(N) \) for some NFA \(N \)
2.4. Regular Expressions.

Def. Let \(\Sigma \) be an alphabet. The regular expressions over \(\Sigma \) and the sets they denote are def. recursively as follows:

1. **Basis.** \(\varepsilon \) is a reg. expr. denoting \(L(\varepsilon) = \{ \varepsilon \} \)

 \(\phi \) \hspace{1cm} L(\phi) = \emptyset

 \(\forall a \in \Sigma: a \) \hspace{1cm} L(a) = \{a\}

2. **Rec. Step.** If \(\alpha, \beta \) are reg. expr. denoting \(L(\alpha) \) and \(L(\beta) \), then

 \(\alpha + \beta \) is a reg. expr. denoting \(L(\alpha) \cup L(\beta) \)

 \(\alpha \beta \) \hspace{1cm} L(\alpha) L(\beta)

 \(\alpha^* \) \hspace{1cm} (L(\alpha))^*

3. Nothing else is a reg. expr. over \(\Sigma \).

Note. Priority of operators in decreasing order:

\[
() \rightarrow * \rightarrow +
\]

Ex. \(\Sigma = \{0,1\} \)

1. \(0^*10^* = ((0^*)1)(0^*) \)

 denotes set of bin. strings containing exactly one 1

2. \((0+1)^*1(0+1)^*\) denotes set of bin. strings containing at least a 1 (or containing 1 as a substring).
(3) \((0+1)^*010(0+1)^*\) denotes set of bin. strings containing 010 as substring.

(4) \(((0+1)(0+1))^*\) or \(((0+1)^2)^*\) = set of even-length bin. strings

(5) \(((0+1)^3)^*\) = set of bin. strings whose length is a multiple of 3.

(6) \((0+1)((0+1)^3)^*\) = set of odd-length bin. strings

(7) \(0(0+1)^*1\) = set of bin. strings beginning with 0, ending with 1

(8) \(0(0+1)^*0+0\) = set of bin. strings beginning & ending with 0

(9) \((0(0+1)^*0+0) + (1(0+1)^*1+1)\) = set of bin. strings beginning and ending with same symbol.

(10) \((0+1)(0+1)^*(0+1)\) = set of bin. strings of length \(\geq 2\) = \((0+1)^*\)

(11) \(\emptyset^* = \varepsilon\)
Some Regular Expressions Identities.

The following identities are useful in simplifying reg. expr.

(1) \(\alpha + \emptyset = \emptyset + \alpha = \alpha \)

(2) \(\alpha \cdot \varepsilon = \varepsilon \cdot \alpha = \alpha \)

(3) \(\alpha \cdot \emptyset = \emptyset \cdot \alpha = \emptyset \)

(4) \(\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma \)

(5) \((\alpha \beta)^* \alpha = \alpha (\beta \alpha)^* \)

(6) \((\alpha + \beta)^* = (\alpha^* \beta^*)^* \)

Proof of (6): We make use of \((\alpha^*)^* = \alpha^*\)

"\(\leq \):
\[
\begin{align*}
\alpha \leq \alpha^* \\
\beta \leq \beta^* \\
\end{align*}
\]
\(\Rightarrow \alpha + \beta \leq \alpha^* \beta^* \)
\(\Rightarrow (\alpha + \beta)^* \leq (\alpha^* \beta^*)^* \)

"\(\geq \):
\[
\begin{align*}
\alpha^* \leq (\alpha + \beta)^* \\
\beta^* \leq (\alpha + \beta)^* \\
\end{align*}
\]
\(\Rightarrow \alpha^* \beta^* \leq (\alpha + \beta)^* \)
\(\Rightarrow (\alpha^* \beta^*)^* \leq ((\alpha + \beta)^*)^* = (\alpha + \beta)^* \)
Equivalence of NFAs and REs

Goal: \(L = L(N) \) for some NFA \(N \)

\[\iff \quad L = L(\alpha) \quad \text{for some RE} \quad \alpha. \] (Kleene Theorem)

Thm. \(L = L(\alpha) \) for some RE \(\alpha \)

\[\implies L = L(N) \quad \text{for some NFA} \quad N. \]

Pf. Let \(\alpha \) be an RE. Our goal is to construct for \(\alpha \) an equiv. NFA \(N \) is constructed recursively from \(\alpha \)

1. **Basis.**
 \[
 \begin{align*}
 \alpha & = \phi \quad : \quad N = \quad \overset{\phi}{\longrightarrow} \\
 \alpha & = \varepsilon \quad : \quad N = \quad \overset{\varepsilon}{\longrightarrow} \\
 \alpha & = a, a \in \Sigma \quad : \quad N = \quad \overset{a}{\longrightarrow}
 \end{align*}
 \]

2. **Recursive Step.** \(\alpha = \alpha_1 \alpha_2 \text{ or } \alpha_1 \alpha_2 \alpha_3 \quad \) or \(\alpha_1 \alpha_2 \alpha_3 \alpha_4 \quad \)

Assume inductively that we have constructed for \(\alpha_1, \alpha_2 \) equiv. NFAs

\[N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \quad \text{and} \]

\[N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \quad \text{resp.} \]

w.l.o.g. \(Q_1 \cap Q_2 = \phi \) and \(\phi \) is not in \(Q_1, Q_2 \)
Case 1. \(\alpha = \alpha_1 + \alpha_2 \)

Then \(N \) is constructed as follows:

Thus, \(N = (Q \cup Q_2 \cup \{q_0\}, \Sigma, \delta, q_0, F) \)

where \(F = F_1 \cup F_2 \)

\[
\delta(q, a) := \begin{cases}
 \{q_1, q_2\} & \text{if } q = q_0, a = \varepsilon \\
 \delta_1(q, a) & \text{if } q \in Q_1 \\
 \delta_2(q, a) & \text{if } q \in Q_2
\end{cases}
\]

Then, \(L(\alpha) = L(\alpha_1) \cup L(\alpha_2) \)

\[= L(N_1) \cup L(N_2) \]
\[= L(N) \]
Ex:

N_1:

N_2:

N:

2.30.1
Case 2. \(\alpha = \alpha_1 \alpha_2 \)

Then \(N \) is

Thus,

\[
N = (Q, \Sigma, \delta, q_0, F)
\]

where

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & \text{if } q \in Q_1, F, \\
\delta_2(q, a) & \text{if } q \in F, \text{ and } a \notin \Sigma \\
\delta_1(q, a) \cup \delta_2(q, a) & \text{if } q \in Q_2.
\end{cases}
\]

Then,

\[
L(N) = L(N_1) L(N_2)
= L(\alpha_1) L(\alpha_2)
= L(\alpha)
\]

Ex:

\[
N_1 : \quad q_1 \quad \text{0/11} \quad \varepsilon \quad \text{0/11} \quad \varepsilon
\]

\[
N_2 : \quad q_2 \quad \text{0} \quad \varepsilon \quad \text{0/11}
\]
\[N = (Q, \Sigma, \delta, q_0, F, F_1) \]

where

\[\delta(q, a) = \begin{cases}
\delta_1(q, a) & \text{if } q \notin F, \\
\delta_1(q, a) & \text{if } q \in F, a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_0\} & \text{if } q \in F, a = \varepsilon \\
\{q_1, q_2\} & \text{if } q = q_0, a = \varepsilon \\
\emptyset & \text{if } q = q_0, a \neq \varepsilon
\end{cases} \]
Remark. In Case (3) the new initial state q_0 is needed in certain cases as the following example shows:

$$N_1 : \xrightarrow{a,b} L(N_1) = a^*b$$

Suppose we do not add a new initial state. Then we would obtain

$$\tilde{N} : \xrightarrow{a,b}$$

Clearly,

$$L(\tilde{N}) \neq (a^*b)^*$$ since $a \in L(\tilde{N})$, but $a \notin (a^*b)^*$.

Following the above construction we obtain the correct NFA for $(a^*b)^*$:
Ex: Constr. an equiv. NFA for \((a^*b)^*\)

For \(a\):

For \(a^*\):

For \(b\):

For \(a^*b\):

Finally for \((a^*b)^*\):

Ex: Constr. an equiv. NFA for \((ab+a)^*\)

For \(a\):

For \(b\):

For \(ab\):

For \(ab+a\):

For \((ab+a)^*\):
Ex. Constr. an equiv. NFA for \((a+b)^*aba\)

For \(a+b\):

For \((a+b)^*\):

For \(aba\):

For \((a+b)^*aba\):
Next: Convert a given DFA (NFA) to an equiv. RE.
First: we introduce the notion of a generalized NFA (GNFA)

Ex: (transitions of a GNFA are labeled by REs)

For example, ab^3a^4b is accepted by computation $q_0 \xrightarrow{ab^3} q_1 \xrightarrow{a^4} q_2 \xrightarrow{b} q_f$ or computation $q_0 \xrightarrow{ab^3} q_1 \xrightarrow{a^4} q_2 \xrightarrow{b} q_f$

Note that a trans. labeled \emptyset means it does not exist.

Thus, a GNFA is an NFA in which transitions are labeled by REs.
Furthermore, a GNFA satisfies:

1. There is a distinguished initial state & a distinguished final state \(q_0 \) and \(q_f \) s.t.
 - no trans. entering \(q_0 \), and
 - no trans. originating from \(q_f \)

2. Transitions are labeled by REs in \(R \) (= set of REs over \(\Sigma \))

Def. A GNFA is a 5-tuple

\[
N = (Q, \Sigma, \delta, q_0, q_f) \text{ s.t.}
\]

1. \(q_0 \) and \(q_f \) are init./final states

2. \(\delta : (Q - \{q_f\}) \times (Q - \{q_0\}) \rightarrow R \)
 is the trans. fct.

Consider input string we \(\Sigma^* \). It is accepted by \(N \) if it can be written as \(w = y_1 y_2 ... y_k \), \(y_i \in \Sigma^* \) s.t. \(\exists \) states \(r_0, r_1, ..., r_k \in Q \) satisfying

1. \(r_0 = q_0 \), \(r_k = q_f \), and

2. \(\forall i = 1, ..., k : \delta(r_{i-1}, r_i) = R_i \land y_i \in L(R_i) \)
Illustration:

\[r_0 \xrightarrow{y_1} r_1 \xrightarrow{y_2} \ldots \xrightarrow{y_{i-1}} r_i \xrightarrow{y_i} r_{i+1} \xrightarrow{y_k} r_k \]

\[q_0 \xrightarrow{y_i} L(R_i) \xrightarrow{y_i} q_f \]

Transforming an NFA to an equiv. GNFA

Example: \(N : \)

\[q_1 \xrightarrow{a} b \xrightarrow{a,b} q_2 \]

equiv. GNFA \(N' : \)

\[q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{a} b \xrightarrow{a+b} \]

\[q_2 \xrightarrow{\epsilon} q_f \]

Input. An NFA \(N = (Q, \Sigma, \delta, q_0, F) \)

Output. An equiv. GNFA

\(N' = (Q \cup \{ q_0, q_f \}, \Sigma, \delta', q_0, q_f) \)

Method.

1. Add \(q_0 \) and \(\epsilon \)-trans. from \(q_0 \) to original initial state \(q_0 \).
2. Add final state \(q_f \) and \(\epsilon \)-trans from each original final state \(q \in F \) to \(q_f \).
3. Replace transitions between any pair of states by a single trans. whose label is \(\dagger \) of labels of original transitions.
Goal: To shrink a given GNFA to an equiv. GNFA with only two states, namely \(q_0\) and \(q_f\).

The label of the trans. from \(q_0\) to \(q_f\) is the desired RE.

Idea: (Equiv.-preserving state elimination)

1. Select an arbitrary state \(q \in \{q_0, q_f\}\)
2. Modify transitions in GNFA as follows:

![Diagram of GNFA transitions](image)

Ex. GNFA

Elim. \(q_i\) yields:

- \(q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a+b} q_3 \xrightarrow{\varepsilon} q_f\)

Elim. \(q_2\) yields:

- \(q_0 \xrightarrow{a^*b} q_3 \xrightarrow{\varepsilon} q_f\)

Thus, the desired RE is \(a^*b(a+b)^*\)
Shrinking a GNFA to an equiv. GNFA with only two states

Input: GNFA $N = (Q, \Sigma, \delta, q_0, q_f)$

Output: An equiv. GNFA N' with only two states q_0, q_f

Method:

repeat
 . select a state $q \in Q - \{q_0, q_f\}$
 . for all $q_i \in Q - \{q, q_f\}$ and $q_j \in Q - \{q, q_0\}$ do
 label transition $q_i \rightarrow q_j$ by $R_1 R_2^* R_3 + R_4$, where
 R_1 is label of $q_i \rightarrow q$
 R_2 $q \rightarrow q$
 R_3 $q \rightarrow q_i$
 R_4 $q_i \rightarrow q_i$

until N' has only 2 states q_0, q_f □

Thm. There is an algorithm that constructs for an NFA an equiv. RE.

Pf. Given an NFA N:
 . Transform N to an equiv. GNFA
 . Shrink GNFA to an equiv. GNFA N' with only two states q_0, q_f
 . Label of $q_0 \rightarrow q_f$ is desired RE □
Ex: NFA N:

Equiv. GNFA:

Elim. q₂:

Elim. q₃:

Thus, desired RE is:

\[a(aa+b)^*ab + b \left[(ba+a)(aa+b)^*ab + bb \right]^* \left[(ba+a)(aa+b)^* + \varepsilon \right] + a(aa+b)^* \]
Ex: NFA N:

Equiv. GNFA:

Elim. q₁:

Elim. q₂:

Elim. q₃:

Elim. q₄:

Thus the equiv. RE is

\((0+1)^* \ 0 \ (0+1)^*(0+1)\)
Ex: NFA N:

Equiv. GNFA:

Elim. q₃:

Elim. q₂:

Elim. q₁:

Thus, RE is:

\[
[b(bb)^*(ba+a)+a]^* [b(bb)^*+\varepsilon]
\]
Chapter Summary

We introduced

DFA\(s\) \((Q, \Sigma, \delta, q_0, F)\)
\[\delta: Q \times \Sigma \rightarrow Q\]

NFA\(s\) \((Q, \Sigma, \delta, q_0, F)\)
\[\delta: Q \times \Sigma^* \rightarrow 2^Q\]

RE\(s\) over \(\Sigma\) using \(\cdot, +, *\)

We proved:

DFA\(s\) \(\Leftrightarrow\) NFA\(s\) : subset constr.
NFA\(s\) \(\Leftrightarrow\) RE\(s\) : Kleene Theor

In particular:

RE \(\xrightarrow{\text{rec. constr.}}\) NFA \(\xrightarrow{\text{subset constr.}}\) DFA

DFA \(\xrightarrow{\text{state elimination}}\) NFA \(\xrightarrow{\text{RE}}\)