

DesignGuide,Transient, Momentum and the DAC

Filter DesignGuide

Design low / high pass or band pass / stop filters...

(-R)-

Slide 6 - 3

entire ground plane.

Spiral meshed as a "strip" geometry. Hole in ground plane is meshed as a "slot", which is more efficient than meshing the

• You have no accurate model for a passive layout.

• You want to know the coupling effects between structures.

• Your other structure simulator takes too long to simulate.

-02

Agilent Technologies

Optimize!

Moments technique and Green's functions to compute the current in layout structures, including vias, coupling between surfaces, and thick metal (3D).

Visualize Current!

• You want to optimize the layout real-estate, performance, etc.

3-D MOM engine gives Sparameter results

Next, Transient...

What is Momentum? EM (electro-magnetic) 3-D solver using Method of

Why use Momentum?

Transient simulation

- Analysis performed in the Time Domain
- Use any Source
- Solutions use Newton Raphson iterations
- You get Amplitude vs. Time
- Time Domain data can be transformed: fs ()
- Available solution file for HB convergence
- Use Transient data for Eye Diagrams

ADS 2009 (version 1.0)

Use these sources for time domain simulations!

Sources-Time Domain

Ţ

V_DC

Step

0 Pulse

. ₽₩L

Č Exp

Ş

Sine

Č SFFM

Ú UserDef

Ö

Dataset

ل Bit Seq

்ற

Pulse

Z Retrig

ل ElkJitter

∲ iDC

шф,

Step

Πф

Pulse

ΠΦ,

Pwl

Ψф

Exp

Π¢

Sine

ПŢ

ШÒ

ШŢ Dataset

φ_{στ}

LFSR

<u>ф</u>п Impulse

20 OneShot

VtPRBS

Usr Def

SFFM

Transient simulation controller

Simulation-Transient	Integration: step control &	error (default:TruncError)
Palette 🗗	Transient/Convolution Simulation:1 ? X	
Trans Options	Tran Instance Name Tran 1	
Sweep Plan Prm Swp	Time Setup Integration Convolution Convergence	
Int C IntCd Name	Output Times Start time 0.0	
NdSet NdSet	Stop time 2 / (100 MHz) None Max time step 1.0 nsec	Tran Tran1
	Min time step	StopTime=2 / (100 MHz) MaxTimeStep=1.0 nsec
Disp Temp Eqn	✓ Limit timestep for Transmission Line	
IfcTran IspecTrn		
PfcTran PspecTrn	Time Step is critical !	Ignored if no TL's
VfcTran VspecTrn		
	OK Apply Cancel Help	

NOTE on Convolution:

Frequency domain models (microstrip) can be converted to the time domain - then convolved with a time-domain input signal to obtain the time-domain output signal. The convolution tab in the transient simulator allows you to define methods and settings.

Next, time step...

Setting the Transient Time Step

Setting the Transient Stop Time

NOTE: Transient analysis can be tricky. Sampling before a circuit reaches steady state will not give correct results when transformed into the frequency domain. Also, use a time step that is at least 1 / twice the highest frequency of interest.

EXAMPLE: Transient TDR Setup

NOTE: After the course, you can use this slide as a reference if you need it!

EXAMPLE: TDR Data Display results...

ADS 2009 (version 1.0) Copyright Agilent Technologies 2009 **Results:**

Channel Simulator...

A fast form of time domain (Transient) simulation for linear / time invariant systems:

DAC (data access component)

The DAC points to a file and reads it: use for measured data or any tabular data.

File tab: Specify the file location, mod Data Items Palette Data Access Component:1	de, edit, etc. Data Access Comp Independent Variable:
Instance Name DataAccessComponent Instance Name DAC1 File Independent Variable Interpolation Display File Independent Variable Parameter Entry Mode Data filename File Name File Name File Name File Name File Name Edit	Instance Name DataAccessComponent Instance Name DAC1 File Independent Variable Interpolation Display Independent Variable Parameters Variable Name Variable Value Parameter Entry Mode Standard Value Value Value
DataAccessComponent DAC1 File= Type=Discrete InterpMode=Index Lookup InterpDom=Rectangular ExtrapMode=Interpolation Mode IVar1= Wal1= Block Name OK Apply Cancel Help	None Equation Editor Tune/Opt/Stat/DOE Setup Add Remove OK Apply Cancel

DAC example: discrete file

For optimization, R1 is assigned to a file which is read by the DAC. "res_std.dscr" contains an index and a list of values (r_val). In the DAC, variable iVal1 is enabled over the range of indexed values beginning with iVar1 which is the first index point in the file.

DAC Optimization: OPT setup and results

Save values = no. Only the MeasEqn is sent to the dataset with the final iVal1 which is 0 =56 ohms and which gives the least reflection. Also, click Simulate > Update Optimization Values to update the iVal in the DAC.

🗖 r	es_s	td.dsc	r - No	otepa
File	Edit	Format	View	Help
BEGI % IN	N DSO	CRDATA r_val		
1 56 2 68 3 83 4 10 END	0 DSCRI	DATA		

freq	my_dbs11	iVal1
1.000GHz	-24.943	0.000

DataAccessComponent

Next. LineCalc...

EXTRA INFORMATION: LineCalc and Model Composer

Go to schematic, click Tools > LineCalc > Star LineCalc

E LineCalc/untitled	
File Simulation Options Help	
	LineCalc is still available!
Component Type MLIN VIII DEFAULT	
Substrate Parameters ID MSUE DEFAULT Er 9.600 Mur 1.000 H 10.000 Hu 3.9e+34 T 0.150 Cond 4.1e7 N/A Y Synthesize Analyze Electrical Electrical DielectricLossModel 1.000 N/A Y	LAB exercise
LowFreqForTanD 1.0e3 N/A HighFreqForTanD 1.0e12 N/A HighFreqForTanD HighFreqForTanD N/A HighFreqForTanD HighFreqForTanD N/A HighFreqForTanD HighF	 Define the substrate Enter L & W to get electrical Enter electrical to get L & W
Parameter(s) modified - Values are not consistent	

MODEL COMPOSER. Generate passive library models (parameterized) for simulation. AMC (Advanced) is even more powerful. You get circuit simulation speed with EM simulation accuracy (Momentum) for any substrate definition.

Lab 6:

Filters: DesignGuide, Momentum, Transient and the DAC

Steps in the Design Process

Design a 200 MHz LPF with Filter DesignGuide

Create a Microstrip BP Filter: 1900 MHz

Transient simulation of 1900 MHz BPF

Microstrip coupled line filter with substrate and VtSine source. Stop time after 15 periods and step using Nyquist for 15 harmonics.

Write an equation using markers and the <u>indep</u> function to calculate delay:

Eqn marker_difference = indep (m2) - indep (m1)

Generate the Layout of 1900 MHz BPF

BPF automatically generated and ready for MOMENTUM simulation!

ADS 2009 (version 1.0)

filter_mom (Layout)

Momentum: substrate, mesh, simulation

Create/Modify Substrate:20	? 🔀	Simulation C	ontrol:20	? 🔀
Substrate Lavers		Stimulus		
		Select a frequency plan	n from list to edit or define a new one	
Name: none		Frequency Plans		Edit/Define Frequency Plan
		Type	F start F stop Npts/Ste	p Sweep Type
Select a substrate laver to edit OR define a new laver		Adaptive	1.0000 GHz 3.0000 GHz 25 max	Adapuve
				Start
Substrate Layers Thickness	Substrate Layer Name			I GHZ V
FreeSpace 10	mil V MSub1_1			3 GHz V
/////// GND ///////	r) Permeability (MUr)			Sample Points Limit
				25
Re, Loss lang	ent V Re, Loss langent V			
Real	Real	Out	Paste	Add to Frequency Plan List
9.0		Cut		
Add Cut Paste		December and as level	Calution Film	Data Diselau
		Process mode: local	Solution Files	Data Display
			Reuse files from the	Open data display when
			previous simulation	sinulation completes
	Cancel Help	Foreground	Dataset	Template
	Cancer		filter_1900_mom Browse	Presentation 1 Browse
esh Setup Controls:20		Simulate Simulate	Apply Cancel S21 -10 -20 -30 -40	Help
Mesh reduction Horizontal side currents (thick conductors) OK Reset Clear Cancel Help	Look at the Mesh verify the resu	n and Its!	-50- -60- 1.0 1.5 2.0	2.5 3.0

Frequency

Use MOM to display coupling effects

Use the same layout but add a rectangle alongside the filter:

OPTIONAL - DAC exercise

Write the file:

