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TABLE 9 Table for the Bit Operators OR,
AND, and XOR.

x y xXVy XAy XDy
0 0 0 0 0
0 1 1 0 1
I 0 1 0 1
1 1 1 1 0

Information is often represented using bit strings, which are lists of zeros and ones. When
this is done, operations on the bit strings can be used to manipulate this information.

DEFINITION 7 A bit string is a sequence of zero or more bits. The length of this string is the number of bits
in the string. '

EXAMPLE 12 101010011 is a bit string of length nine. <

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and
bitwise XOR of two strings of the same length to be the strings that have as their bits the OR,
AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols
V, A, and @ to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively.
We illustrate bitwise operations on bit strings with Example 13.

EXAMPLE 13  Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 10110110 and
110001 1101. (Here, and throughout this book, bit strings will be split into blocks of four
bits to make them easier to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking
the OR, AND, and XOR of the corresponding bits, respectively. This gives us

01 1011 0110
11 0001 1101

11 1011 1111 bitwise OR
01 0001 0100  bitwise AND
10 1010 1011 bitwise XOR p

Exercises Chedd 1|

ich of these sentences are propositions? What are the d) 4+x =35

“truth values of those that are propositions? e) The moon is made of green cheese.
a) Boston is the capital of Massachusetts. f) 2" = 100. ;
b) Miami is the capital of Florida. 3. What is the negation of each of these propositions?
¢) 243 =35 a) Mei has an MP3 player.
d) 5+7=10. b) There is no pollution in New Jersey.
e) x+2=11. ¢) 24+ 1=3.
f) Answer this question. d) The summer in Maine is hot and sunny.
2. Which of these are propositions? What are the truth values 4. What is the negation of each of these propositions?
of those that are propositions? a) Jennifer and Teja are friends.
a) Do not pass go. ) b) There are 13 items in a baker’s dozen.
b) What time is it? ¢) Abby sent more than 100 text messages every day.
¢) There are no black flies in Maine. d) (21 is a perfect square.




iegation of each of these propositions?
more than 100 GB free disk space on his

cks e-mails and texts from Jennifer.
43 = 999.
rode her bicycle 100 miles on Sunday.
at Smartphone A has 256 MB RAM and 32 GB
nd the resolution of its camera is 8 MP; Smart-
. has 288 MB RAM and 64 GB ROM, and the
ym of its camera is 4 MP; and Smartphone C has
B RAM and 32 GB ROM, and the resolution of
era is 5 MP. Determine the truth value of each of
opositions.
artphone B has the most RAM of these three smart-
ones.
artphone C has more ROM or a higher resolution
Arnera than Smartphone B.
artphone B has more RAM, more ROM, and a
‘higher resolution camera than Smartphone A.
f Smartphone B has more RAM and more ROM than
Smartphone C, then it also has a higher resolution
camera.
Smartphone A has more RAM than Smartphone B if
and only if Smartphone B has more RAM than Smart-
phone A.
uppose that during the most recent fiscal year, the an-
-nual revenue of Acme Computer was 138 billion dollars
and its net profit was 8 billion dollars, the annual revenue
of Nadir Software was 87 billion dollars and its net profit
was 5 billion dollars, and the annual revenue of Quixote
Media was 111 billion dollars and its net profit was
13 billion dolars. Determine the truth value of each of
these propositions for the most recent fiscal year.
a) Quixote Media had the largest annual revenue.
b) Nadir Software had the lowest net profit and Acme
Computer had the largest annual revenue.
¢) Acme Computer had the largest net profit or Quixote
Media had the largest net profit.
d) If Quixote Media had the smallest net profit, then
Acme Computer had the largest annual revenue. -
€) Nadir Software had the smallest net profit if and only
%i if Acme Computer had the largest annual revenue.
: 8. Let p and g be the propositions

p : I bought a lottery ticket this week.
g : I won the million dollar jackpot.

Express each of these propositions as an English sen-

tence.

a) —p b) pvg ) p—>gq
d) pArg e) pegq £) =p - —q
g “pA—g h) =pVvi(pA q)

9. Let p and g be the propositions “Swimming at the New
Jersey shore is allowed” and “Sharks have been spotted
near the shore,” respectively. Express each of these com-
pound propositions as an English seg}%}:q

a) —g wDLP A £ pVy
d p—>—g '/-/_é;q—w f) -p—>—q
g pe g Fep APV Tq)

1.1 Propositional Logic 13

10. Let p and g be the propositions “The election is decided”
and “The votes have been counted,” respectively. Express
each of these compound propositions as an English sen-

tence.

a) —p b) pvgq

€) “pAgq d)g—p

e) —g — —p f) —=p— —q

g pegq h) =gV (=pnA gq)

11. Let p and g be the propositions
p : Itis below freezing,
q : It is snowing.
Write these propositions using p and ¢ and logical con-
nectives (including negations).
a) Itis below freezing and snowing.
b) It is below freezing but not snowing.
¢) Itis not below freezing and it is not snowing,
d) Itis either snowing or below freezing (or both).
e) Ifitis below freezing, it is also snowing.
f) Either it is below freezing or it is snowing, but it is
not snowing if it is below freezing.
g) That it is below freezing is necessary and sufficient
for it to be snowing.
12. Let p, g, and r be the propositions

P : You have the flu.
q : You miss the final examination.
r : You pass the course.

Express each of these propositions as an English sen-

tence.
a) p—>gq b) ~q & r
c) g — ~r d) pvgvr

e (p—>-r)Vvig— —r)
) (brg)vimgar)
13. Let p and g be the propositions
p - You drive over 65 miles per hour.
q :You get a speeding ticket.

Wriie these propositions using p and ¢ and logical con-

nectives (including negations).

a) You do not drive over 65 miles per hour.

b) You drive over 65 miles per hour, but you do not get
a speeding ticket.

¢) You will get a speeding ticket if you drive over
65 miles per hour.

d) If you do not drive over 65 miles per hour, then you
will not get a speeding ticket.

) Driving over 65 miles per hour is sufficient for getting
a speeding ticket.

f) You get a speeding ticket, but you do not drive over
65 miles per hour.

g) Whenever you get a speeding ticket, you are driving
over 65 miles per hour.

14. Let p, g, and r be the propositions

p : You get an A on the final exam.

¢ : You do every exercise in this book.

r :You get an A in this class.
Write these propositions using p, ¢, and r and logical
connectives (including negations).
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15.

16.

17.

18.

19.
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a) You get an A in this class, but you do not do every
exercise in this book.

b) You getan A on the final, you do every exercise in this
book, and you get an A in this class.

¢) To get an A in this class, it is necessary for you to get
an A on the final.

d) You get an A on the final, but you don’t do every ex-
ercise in this book; nevertheless, you get an A in this
class.

e) Getting an A on the final and doing every exercise in
this book is sufficient for getting an A in this class.

f) You will get an A in this class if and only if you either
do every exercise in this book or you get an A on the
final.

Let p, g, and r be the propositions

p : Grizzly bears have been seen in the area.
q : Hiking is safe on the trail.
r : Berries are ripe along the trail.

Write these propositions using p, g, and r and logical
connectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have
not been seen in the area.

b) Grizzly bears have not been seéen in the area and hik-
ing on the trail is safe, but berries are ripe along the
trail.

¢) If berries are ripe along the trail, hiking is safe if and
only if grizzly bears have not been seen in the area.

d) Itis not safe to hike on the trail, but grizzly bears have
not been seen in the area and the berries along the trail
are ripe.

e) Forhiking on the trail to be safe, it is necessary but not
sufficient that berries not be ripe along the trail and
for grizzly bears not to have been seen in the area.

f) Hiking is not safe on the trail whenever grizzly bears
have been seen in the area and berries are ripe along
the trail.

Determine whether these biconditionals are true or
false.

a) 2+2=4ifandonlyif | +1 = 2.

b) 14+ 1=2ifandonlyif2+3 = 4.

¢) 14 1=3if and only if monkeys can fly.

d) 0> lifand only if2 > 1.

Determine whether each of these conditional statements
is true or false.

a) If1+1=2,then2 +2 =35.

b) If1+1=3,then2+2=4.

¢) If14+1=3,then2+2=35.

d) If monkeys can fly, then 1 + 1 = 3.

Determine whether each of these conditional statements
is true or false.

a) If 1 + 1 = 3, then unicorns exist.

b) If 1 4+ I'= 3, then dogs can fly.

¢) If 1 + 1 =2, then dogs can fly.

d) If2+2=4,then 1 +2 = 3.

For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.

20.

21.

22.

23.

a) Coffee or tea comes with dinner.

b) A password must have at least three digits or be at
least eight characters long.

¢) The prerequisite for the course is a course in number
theory or a course in cryptography.

d) You can pay using U.S. dollars or euros.

For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

a) Experience with C44- or Java is required.

b) Lunch includes soup or salad.

¢) To enter the country you need a passport or a voter
registration card.

d) Publish or perish.

For each of these sentences, state what the sentence means

if the logical connective or is an inclusive or (that is, a dis-

junction) versus an exclusive or. Which of these meanings

of or do you think is intended? -

a) To take discrete mathematics, you must have taken
calculus or a course in computer science.

b) When you buy a new car from Acme Motor Company,
you get $2000 back in cash or a 2% car loan.

¢) Dinner for two includes two items from column A or
three items from column B.

d) Schoolis closed if more than 2 feet of snow falls or if
the wind chill is below —100.

Write each of these statements in the form “if p, then ¢”

in English. [Hint: Refer to the list of common ways to ex-

press conditional statements provided in this section.]

a) Itis necessary to wash the boss’s car to get promoted.

b) Winds from the south imply a spring thaw.

¢) A sufficient condition for the warranty to be good is
that you bought the computer less than a year ago.

d) Willy gets caught whenever he cheats.

e) You can access the website only if you pay a subscrip-
tion fee.

f) Getting elected follows from knowing the right peo-
ple.

g) Carol gets seasick whenever she is on a boat.

Write each of these statements in the form “if p, then ¢”

in English. [Hint: Refer to the list of common ways to

express conditional statements. ]

a) It snows whenever the wind blows from the northeast.

b) The apple trees will bloom if it stays warm for a week.

¢) That the Pistons win the championship implies that
they beat the Lakers.

d) It is necessary to walk 8 miles to get to the top of
Long’s Peak. :

e) To get tenure as a professor, it is sufficient to be world-
famous.

f) If you drive more than 400 miles, you will need to buy
gasoline.

g) Your guarantee is good only if you bought your CD
player less than 90 days ago.

h) Jan will go swimming unless the water is too cold.
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hat

rite each of these statements in the form “if p, then g”
in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) I will remember to send you the address only if you
send me an e-mail message.

b) To be a citizen of this country, it is sufficient that you
were born in the United States.

¢) If you keep your textbook, it will be a useful reference
in your future courses.

d) The Red Wings will win the Stanley Cup if their goalie
plays well.

.¢) That you get the job implies that you had the best
credentials.

f) The beach erodes whenever there is a storm.

g) It is necessary to have a valid password to log on to
the server.

h) Youwillreach the summit unless you begin your climb
too late.

Write each of these propositions in the form “p if and

only if ¢” in English.

a) If it is hot outside you buy an ice cream cone, and if

you buy an ice cream cone it is hot outside.

b) Foryou to win the contest it is necessary and sufficient

that you have the only winning ticket.

¢) You get promoted only if you have connections, and

you have connections only if you get promoted.

d) If you watch television your mind will decay, and con-

versely.

e) The trains run late on exactly those days when I take
it.

Write each of these propositions in the form “p if and

only if ¢”” in English.

a) For you to get an A in this course, it is necessary and

sufficient that you learn how to solve discrete mathe-

matics problems.

b) If you read the newspaper every day, you will be in-

formed, and conversely.

¢) It rains if it is a weekend day, and it is a weekend day

if it rains. v

d) You can see the wizard only if the wizard is not in,

and the wizard is not in only if you can see him.

tate the converse, contrapositive, and inverse of each of
these conditional statements.

a) If it snows today, I will ski tomorrow.

b) 1come to class whenever there is going to be a quiz.

€) A positive integer is a prime only if it has no divisors
other than 1 and itself.

State the converse, contrapositive, and inverse of each of

these conditional statements.

a) If it snows tonight, then I will stay at home.

b) Igo to the beach whenever it is a sunny summer day.

¢) When I stay up late, it is necessary that I sleep until
noon.

ow many rows appear in a truth table for each of these
ompound propositions?

a) p— -p

b) (pVv—r)a(gVv-s)
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¢) gvVpVsV-rV-tVu
d) (pArAt) e @nn
30. How many rows appear in a truth table for each of these
compound propositions?
a) (g > —p)V(p—>—q)
b) (pV—t)A(pV—s)
¢) (po>r)V(ms— =)V (-u—v)
d) (pAFrASIV@AD Y (rA—t)
31. Construct a truth table for each of these compound propo-
sitions.
a) pA—p b) pv-p
¢ (pv—q)—>gq d (pvg)—>(prg)
e (p—q) (~qg—>—p)
f) p—>q9)—>(@q—p

32. Construct a truth table for each of these compound propo-
sitions.
a) p—>—p b) p < —p
¢) p®(pVvy) d) (prg)—>(pVvq)

e) (g~ —p)e(peqg)
) (peg®(pe—q)
33, Construct a truth table for each of these compound propo-
sitions.
a) (pvq)—> (p®qg
) (pva)®d(pAg)
e) (poq)®(—p o)
) (p®9) ~ (p&—q)
34. Construct a truth table for each of these compound propo-

b) (p®qg)—> (pArq)
d) (peog)@(=pe q)

sitions.
a) pdp b) p®—p
€) pd—q d) "p®—gq

) p®Vpd—g) ) POPA(P&—q)
35. Construct a truth table for each of these compound propo-

sitions.

a) p— —q

o (p>qV(p—>4q

e) (peogVi-peqg)

£) (=p o —g) < (poq)
36. Construct a truth table for each of these compound propo-

b) —p ¢
d) (p—=>@A(~p—q)

sitions.
a) (pvq)Vvr b) (pva)nr
c) (pAq)Vvr d) (pAQ AT

TR(pva A f) (pAg)v-r
37.“Construct a truth table for each of these compound propo-

sitions. }

a) p—>(—qVvr)

b) =p—(q@—>r)

o (p—=qV(—p—r)

d p=>gA(-p—>r)

e) (peoqgV(mqger)

f) (mpo—q) e @or)
38. Construct a truth table for ((p — q) — r) — s.
39. Construct a truth table for (p <> g) < (r < s).
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Explain, without using a truth table, why (p v —g) A
(q VvV —r)A(rv-p)is true when p, g, and r have the
same truth value and it is false otherwise.

Explain, without using a truth table, why (p v g v r) A
(=p Vv —g Vv =r) is true when at least one of p, g, and r
is true and at least one is false, but is false when all three
variables have the same truth value.

What is the value of x after each of these statements is
encountered in a computer program, if x = 1 before the
statement is reached?

a) ifx+2=3thenx :=x -+

b) if(x+1=3)ORQ2x+2=3)thenx :=x + 1

¢) if2x+3=5)AND Bx+4=T)thenx :=x + 1
D if(x+1=2)XOR(x+2=23)thenx :=x + 1

e ifx <2thenx:=x+1

Find the bitwise OR, bitwise AND, and bitwise XOR of
each of these pairs of bit strings.

a) 1011110, 010 0001

b) 11110000, 1010 1010

¢) 000111 0001, 100100 1000
d) 111111 1111, 00 0000 0000

Evaluate each of these expressions.

a) 11000 A (01011 v 11011)
b) (01111 A 10101) v 01000
¢) (01010 1 1011) & 0 1000
d) (11011 v 01010) A (10001 v 11011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a
proposition has a truth value that is a number between 0 and 1,
inclusive. A proposition with a truth value of O is false and one
with a truth value of 1 is true. Truth values that are between 0
and 1 indicate varying degrees of truth. For instance, the truth
value 0.8 can be assigned to the statement “Fred is happy,”

because Fred is happy most of the time, and the truth value
0.4 can be assigned to the statement “John is happy,” because
John is happy slightly less than half the time. Use these truth
values to solve Exercises 45-47.

45,

46.

47.

#48,
%49,

50.

The truth value of the negation of a proposition in fuzzy
logic is 1 minus the truth value of the proposition. What
are the truth values of the statements “Fred is not happy”
and “John is not happy?”

The truth value of the conjunction of two propositions in
fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements
“Fred and John are happy” and “Neither Fred nor John is
happy?”

The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements

" “Fred is happy, or John is happy” and “Fred is not happy,

or John is not happy?”
Is the assertion “This statement is false” a proposition?

The nth statement in a list of 100 statements is “Exactly

n of the statements in this list are false”

a) What conclusions can you draw from these state-
ments?

b) Answer part (a) if the nth statement is “At least n of
the statements in this list are false.”

¢) Answer part (b) assuming that the list contains 99
statements.

An ancient Sicilian legend says that the barber in a remote

town who can be reached only by traveling a dangerous

mountain road shaves those people, and only those peo-

ple, who do not shave themselves. Can there be such a

barber?

ications of Propositional Logic

Introduction

Logic has many important applications to mathematics, computer science, and numerous other
disciplines. Statements in mathematics and the sciences and in natural language often are im-
precise or ambiguous. To make such statements precise, they can be translated into the language
of logic. For example, logic is used in the specification of software and hardware, because these
specifications need to be precise before development begins. Furthermore, propositional logic
and its rules can be used to design computer circuits, to construct computer programs, to verify
the correctness of programs, and to build expert systems. Logic can be used to analyze and
solve many familiar puzzles. Software systems based on the rules of logic have been developed
for constructing some, but not all, types of proofs automatically. We will discuss some of these
applications of propositional logic in this section and in later chapters.

Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional
variables and logical connectives. In particular, English (and every other human language) is

A ——— e R



34 1/The Foundations: Logic and Proofs

Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or equiv-
alently, whether its negation is a tautology (see Exercise 60). This can be done by hand for
a compound proposition with a small number of variables, but when the number of variables
grows, this becomes impractical. For instance, there are 220 = 1,048,576 rows in the truth ta-
ble for a compound proposition with 20 variables. Clearly, you need a computer to help you
determine, in this way, whether a compound proposition in 20 variables is satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound
propositions with hundreds, thousands, or millions of variables arise. Note, for example, that
when there are 1000 variables, checking every one of the 2199 (a number with more than 300
decimal digits) possible combinations of truth values of the variables in a compound proposition
cannot be done by a computer in even trillions of years. No procedure is known that a com-
puter can follow to determine in a reasonable amount of time whether an arbitrary compound
proposition in such a large number of variables is satisfiable. However, progress has been made
developing methods for solving the satisfiability problem for the particular types of compound
propositions that arise in practical applications, such as for the solution of Sudoku puzzles.
Many computer programs have been developed for solving satisfiability problems which have
practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this
question further. In particular, we will explain the important role the propositional satisfiability
problem plays in the study of the complexity of algorithms.

Exercises Chop 1.2

1. Use truth tables to verify these equivalences. b) (pArg)Ar=pAa(gAar).
a) pAT=p b) pvF=p 5. Use a truth table to verify the distributive law
¢c) pAF=F d) pvT=T pA(@Vr)=(pAg)V{pAr).
e) pvp=p f) pAp=p se a truth table to verify the first De Morgan law
2. Show that —(—p) and p are logically equivalent. s ~(pAg)=-pV—q.
3. Use truth tables to verify the commutative laws 7. Use De Morgan’s laws to find the negation of each of the
a) pvg=qVp. b) prg=gAp. pwing statements.
4. Use truth tables to verify the associative laws dFan is rich and happy.
a) (pvgvr=pvigvVvr). . 'b) Carlos will bicycle or run tomorrow.

HENRY MAURICE SHEFFER (1883-1964) Henry Maurice Sheffer, born to Jewish parents in the western
Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin
School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,
and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City
College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
remained at Harvard until his retirement in 1952.
i Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after its use
in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell wrote that Sheffer had invented
a powerful method that could be used to simplify the Principia. Because of this comment, Sheffer was something of a mystery man
n to logicians, especially because Sheffer, who published little in his career, never published the details of this method, only describing
it in mimeographed notes and in a brief published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 12 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed withi his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.




¢) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.

8. Use De Morgan’s laws to find the negation of each of the
following statements.

a) Kwame will take a job in industry or go to graduate
school. .

b) Yoshiko knows Java and calculus.

¢) James is young and strong.

d) Rita will move to Oregon or Washington.

59, Show that each of these conditional statements is a tau-

y by using truth tabl

“#4y p— (pVaq)
d (prg)— (p—>q)

e ~(p>q)—p f) ~(p—>9)—> ¢

IS 10. Show that each of these conditional statements is a tau-
tology by using truth tables.
a) [~pA(pVl—q
b) [(p—> ) Alg—=>n]—>(p—>7)
o [pAr(p—>q)l—q
dpvonalp—orIng—=>nl—r

11. Show that each conditional statement in Exercise 9 is a
tautology without using truth tables.

12. Show that each conditional statement in Exercise 10 is a

tautology without using truth tables.

Use truth tables to verify the absorption laws.

a) pv(pAg)=p b) palpvg)=p

14. Determine whether (—=p A (p — ¢)) — —q is a tautol-
ogy.

¥ 15, Determine whether (—g A (p — g)) — —p is a tautol-
ogy.

Each of Exercises 16-28 asks you to show that two compound

propositions are logically equivalent. To do this, either show

that both sides are true, or that both sides are false, for exactly

the same combinations of truth values of the propositional

variables in these expressions (whichever is easier).

16. Showthat p < gand (p A q) V (—p A —q) arelogically

_equivalent.

how that —(p < ¢) and p <> —q are logically equiva-

lent.

18. Showthat p — g and ~g — —p are logically equivalent.

19. Show that —p <> g and p <> —q are logically equivalent.

20. Show that —(p ® q) and p <> ¢ are logically equivalent.

21. Show that —(p <> q) and —p <> g are logically equiva-
lent.

22. Showthat (p'— g) A (p —> ryand p — (g A r) arelog-
ically equivalent.

23. Show that (p — r) A (g — r) and (p Vv q) —> r are log-
ically equivalent.

24. Showthat (p — q) vV (p — r)and p — (q V r) arelog-
ically equivalent.

25. Show that (p — r) V (g — r)and (p A q) — r are log-

ically equivalent.

Showthat—p — (g — r)andg — (p Vv r)arelogically

equivalent.

27. Show that p < g and (p — q) A (g — p) are logically

equivalent. :

28. Showthat p < g and —p <« —q are logically equivalent.
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29. Show that (p = g) A (g = r) — (p — r) is a tautol-
ogy.

155> 30, Show that (p V ¢) A (=p V r) = (g V r) is a tautology.

31. Show that (p — g) — r and p — (g —> r) are not log-
ically equivalent.

32. Show that (p A g) — r and (p — r) A (g —> 1) are not
logically equivalent.

33. Show that (p > q)—> (r—s) and (p—>r)—
(g — s) are not logically equivalent.

The dual of a compound proposition that contains only the

logical operators V, A, and — is the compound proposition

obtained by replacing each Vv by A, each A by V, each T

by F, and each F by T. The dual of s is denoted by s*,

34. Find the dual of each of these compound propositions.
a) pV—q b) pAl(gV (rAT))
©) (pA—q)V (g AF)

35. Find the dual of each of these compound propositions.
a) pA—g AT b) (pAgAF)VS
¢ (pvhA@VvT)

36. When does s* = 5, where s is a compound proposition?

37. Show that (s*)* = s when s is a compound proposition.

38. Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

#%39, Why are the duals of two equivalent compound proposi-

tions also equivalent, where these compound propositions
contain only the operators A, V, and =?

40. Find a compound proposition involving the propositional
variables p, g, and r that is true when p and g are true
and r is false, but is false otherwise. [Hint: Use a con-
junction of each propositional variable or its negation.]

41. Find a compound proposition involving the propositional
variables p, ¢, and r that is true when exactly two of p, g,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
combination of values for which the compound proposi-
tion is true. Each conjunction should include each of the
three propositional variables or its negations.]

ES" 42, Suppose that a truth table in # propositional variables is

specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive nor-
mal form. )
A collection of logical operators is called functionally com-
plete if every compound proposition is logically equivalent to
a compound proposition involving only these logical opera-
tors.

43. Show that =, A, and Vv form a functionally complete col-
lection of logical operators. [Hint: Use the fact that every
compound proposition is logically equivalent to one in
disjunctive normal form, as shown in Exercise 42.]
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Show that — and A form a functionally complete col-
lection of logical operators. [Hint: First use a De Mor-
gan law to show that p Vv g is logically equivalent to
—{(=p A—g)]

Show that — and Vv form a functionally complete collec-
tion of logical operators.

The following exercises involve the logical operators NAND
and NOR. The proposition p NAND q is true when either p
or ¢, or both, are false; and it is false when both p and g are
true. The proposition p NOR ¢ is true when both p and g are
false, and it is false otherwise. The propositions p NAND g
and p NOR q are denoted by p | g and p | ¢, respectively.
(The operators | and | are called the Sheffer stroke and the
Peirce arrow after H. M. Sheffer and C. S. Peirce, respec-
tively.)

46.
47.
48.
49.
50.

#51.

52.

53.
54.

*55,

56.

57.

Construct a truth table for the logical operator NAND.

Show that p | g is logically equivalent to —(p A g).

Construct a truth table for the logical operator NOR.

Show that p | g is logically equivalent to —~(p V g).

In this exercise we will show that {|} is a functionally

complete collection of logical operators.

a) Show that p | p is logically equivalent to —p.

b) Show that (p | g) | (p | gq) is logically equivalent
topVvag.

¢) Conclude from parts (a) and (b), and Exercise 49, that
{{} is a functionally complete collection of logical
operators.

Find a compound proposition logically equivalent to

p — q using only the logical operator | .

Show that {|} is a functionally complete collection of log-

ical operators.

Show that p | g and g | p are equivalent.

Show that p | (¢ | ) and (p | ¢) | r are not equivalent,

so that the logical operator | is not associative.

How many different truth tables of compound proposi-

tions are there that involve the propositional variables p

and g?

Show that if p, g, and r are compound propositions such

that p and g are logically equivalent and ¢ and r are log-

ically equivalent, then p and r are logically equivalent.

The following sentence is taken from the specification of

a telephone system: “If the directory database is opened,

then the monitor is put in a closed state, if the system is

not in its initial state.” This specification is hard to under-

Predicates and Quantifiers
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59.
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64.

65.
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stand because it involves two conditional statements. Find
an equivalent, easier-to-understand specification that in-
volves disjunctions and negations but not conditional
statements.

How many of the disjunctions pVv —~gq, ~pVg,gVr,
g vV —r, and =g Vv —r can be made simultaneously true
by an assignment of truth values to p, g, and »?

How many of the disjunctions pv—gVvs, —-p Vv
“rvVs, pVorVos, spVgVvos, gvryv-s,
gV -rVv-s,mpV-ogV-s,pVrVvs,andpVrVv-s
can be made simultaneously true by an assignment of
truth values to p, g, r, and 57

Show that the negation of an unsatisfiable compound
proposition is a tautology and the negation of a compound
proposition that is a tautology is unsatisfiable.

Determine whether each of these compound propositions
is satisfiable. -
a) (pvV—g) APV APV —g)

b) (p—=>A(p—>—-g)AN(—p—=>g)A(mp— —q)

) pepAr(-poq)

Determine whether each of these compound propositions

is satisfiable.

a) (pvVgVv—r)A(pVv—gV-s)A(pV-rv-os)A
(—pVv—gV-sYA(pVgV-—s)

b) (mpVogVEYA(CpVGVTS)A(pV gV
“SA(pV=rV=s)A(pVgV-r)A(pV
=V ms)

c) (pvVgVvrIA(pV—ogV-s)A(@QVrVs) A
PV FEVA(RpVGVY=S)A(PV =gV —r) A
(mpV=gVs)A(=pV—rV-s)

Show how the solution of a given 4 x 4 Sudoku puzzle

can be found by solving a satisfiability problem.

Construct a compound proposition that asserts that ev-
ery cell of a 9 x 9 Sudoku puzzle contains at least one
number.

Explain the steps in the construction of the compound
proposition given in the text that asserts that every col-
umn of 29 x 9 Sudoku puzzle contains every number.

Explain the steps in the construction of the compound
proposition given in the text that asserts that each of the
nine 3 x 3 blocks of a 9 x 9 Sudoku puzzle contains ev-
ery number.

Introduction

Propositional logic, studied in Sections 1.1-1.3, cannot adequately express the meaning of all
statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”
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1. Let P(x) denote the statement “x < 4.” What are these
truth values?

@ b) P(4) c) P(6)

et P(x) be the statement “the word x contains the

letter a.”” What are these truth values?

a) P(orange) b) P(lemon)

¢) P(true) d) P(false)

Let Q(x, y) denote the statement “x is the capital of y.”

What are these truth values?

a) Q(Denver, Colorado)

b) Q(Detroit, Michigan)

¢) Q(Massachusetts, Boston)

d) O(New York, New York)

4. State the value of x after the statement if P (x) thenx =1
is executed, where P(x) is the statement “x > 1,7 if the

e of x when this statement is reached is

1 od

i = 0. b) x=1.
¢) x =2.
5. Let P(x) be the statement “x spends more than five hours

every weekday in class,” where the domain for x consists
of all students. Express each of these quantifications in
English.
a) dxP(x) b) VxP(x)
¢) Ix—-P(x) d) Vx—=P(x)
6. Let N(x) be the statement “x has visited North Dakota,”
where the domain consists of the students in your school.
Express each of these quantifications in English.
a) IxNEx)  b) VaN(x) ¢ —3IxN(x)
d) Ix—~N(x) e) VxN(x) f) Vx=N(x)
Translate these statements into English, where C (x) is “x
is a comedian” and F(x) is “x is funny” and the domain

e ists of all people. —
%X(C(x) — F(x)) %\u(cm A F(x))
¢) Ix(C(x) - F(x)) d) x(C(x) A F(x))

8. Translate these statements into English, where R(x) is “x
is arabbit” and H (x) is “x hops” and the domain consists
of all animals.

a) Vx(R(x) = H(x)) b) Vx(R(x) A H(x))
¢) Ax(R(x) — H(x)) d) Ix(Rx) A H(x))

9. Let P(x) be the statement “x can speak Russian” and let
QO(x) be the statement “x knows the computer language
C++. Express each of these sentences in terms of P (x),
Q(x), quantifiers, and logical connectives. The domain
for quantifiers consists of all students at your school.

a) There is a student at your school who can speak Rus-
sian and who knows C++-.

b) There is a student at your school who can speak Rus-
sian but who doesn’t know C++.

¢) Every student at your school either can speak Russian
or knows C++-.

7
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d) No student at your school can speak Russian or knows

C++.

10. Let C(x) be the statement “x has a cat,” let D(x) be the
statement “x has a dog,” and let F(x) be the statement “x
has a ferret.” Express each of these statements in terms of
C(x), D(x), F(x), quantifiers, and logical connectives.
Let the domain consist of all students in your class.

a) A student in your class has a cat, a dog, and a ferret.

b) All students in your class have a cat, a dog, or a ferret.

¢) Some student in your class has a cat and a ferret, but
not a dog.

d) No student in your class has a cat, a dog, and a ferret.

e) For each of the three animals, cats, dogs, and ferrets,
there is a student in your class who has this animal as

. a pet.

11. Let P(x) be the statement “x = x2 7 If the domain con-
sists of the integers, what are these truth values?
a) P(0) by P(1) o PQ2)
d) P(—1) e) AxP(x) f) VxP(x)

12. Let Q(x) be the statement “x 4 1 > 2x.” If the domain
consists of all integers, what are these truth values?

a) Q0 b) Q(—1) c) (1)
d) IxQ(x) e) VxQO(x) f) Ax—Q(x)
g) Vx—0(x)

13. Determine the truth value of each of these statements if

%omain consists of all igr}te ers.

L nin+1 > n) %ﬂn&n = 3n)
¢) In(n = —n) d) Vn(3n < 4n)

14. Determine the truth value of each of these statements if
the domain consists of all real numbers.

a) Ix3 =-1) b) Ix(x?* < x2)
¢) Vx((=x)?* =x?) d) Vx(2x > x)

15. Determine the truth value of each of these statements if
the domain for all variables consists of all integers.
a) VYn(n? > 0) b) In(n* =2)
¢) VYn(n®>n) d) In(n? <0)

16. Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.
a) dx(x?=2) b) Ax(x? = —1)
¢) Vx(x2+2>1) d) Vx(x2 # x)

17. Suppose that the domain of the propositional function
P (x) consists of the integers 0, 1, 2, 3, and 4. Write out
each of these propositions using disjunctions, conjunc-
tions, and negations.

a) dxP(x) b) VxP(x) ¢) dx—Px)
d) Yx—P(x) e) —dxP(x) f) =VxP(x)

18. Suppose that the domain of the propositional function
P(x) consists of the integers —2, —1, 0, 1, and 2. Write
out each of these propositions using disjunctions, con-
junctions, and negations.

a) dxP(x) b) VxP(x)
e) —IxP(x)

¢) Ix—-P(x)
f) =VxP(x)

d) Vx—P(x)
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Suppose that the domain of the propositional function
P (x) consists of the integers 1, 2, 3, 4, and 5. Express
these statements without using quantifiers, instead using
only negations, disjunctions, and conjunctions.

a) IxP(x) b) VxP(x)

¢) —IxP(x) d) -VxP(x)

e) Vx((x #3) — P(x)) Vv Ix—P(x)

Suppose that the domain of the propositional function
P(x) consists of —5, —3, —1, 1, 3, and 5. Express these
statements without using quantifiers, instead using only
negations, disjunctions, and conjunctions.

a) dxP(x) b) VxP(x)

c) Vx{((x 1) = P(x))

d) Ix((x = 0) A P(x))

e) x(—Px) AVx((x <0) — P(x))

For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone is studying discrete mathematics.

b) Everyone is older than 21 years.

¢) Every two people have the same mother.

d) No two different people have the same grandmother.

For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone speaks Hindi.

b) There is someone older than 21 years.

¢) Every two people have the same first name.
d) Someone knows more than two other people.

Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.

a) Someone in your class can speak Hindi.

b) Everyone in your class is friendly.

¢) There is a person in your class who was not born in
California.

d) A student in your class has been in a movie.

e) No student in your class has taken a course in logic
programming.

Translate in two ways each of these statements into logi-

cal expressions using predicates, quantifiers, and logical

connectives. First, let the domain consist of the students

in your class and second, let it consist of all people.

a) Everyone in your class has a cellular phone.

b) Somebody in your class has seen a foreign movie.

¢) There is a person in your class who cannot swim.

d) All students in your class can solve quadratic equa-
tions.

¢) Some student in your class does not want to be rich.

Translate each of these statements into logical expres-
s1ons using predicates, quantifiers, and logical connec-

k }Not everyone is perfect.
¢) All your friends are perfect.
d) At least one of your friends is perfect.

.
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e) Everyone is your friend and is perfect.

f) Not everybody is your friend or someone is not per-
fect.

Translate each of these statements into logical expres-

sions in three different ways by varying the domain and

by using predicates with one and with two variables.

a) Someone in your school has visited Uzbekistan.

b) Everyone in your class has studied calculus and C+-.

¢) No one in your school owns both a bicycle and a mo-
torcycle.

d) There is a person in your school who is not happy.

e) Everyone in your school was born in the twentieth
century.

Translate each of these statements into logical expres-

sions in three different ways by varying the domain and

‘by using predicates with one and with two variables.

a) A student in your school has lived in Vietnam.

b) There is a student in your school who cannot speak
Hindi.

¢) A student in your school knows Java, Prolog, and
C++.

d) Everyone in your class enjoys Thai food.

e) Someone in your class does not play hockey.

Translate each of these statements into logical expres-

sions using predicates, quantifiers, and logical connec-

tives.

a) Something is not in the correct place.

b) All tools are in the correct place and are in excellent
condition.

¢) Everything isin the correct place and in excellent con-
dition.

d) Nothing is in the correct place and is in excellent con-
dition.

e) One of your tools is not in the correct place, but it is
in excellent condition.

Express each of these statements using logical operators,

predicates, and quantifiers.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

¢) The disjunction of two contingencies can be a tautol-
ogy.

d) The conjunction of two tautologies is a tautology.

Suppose the domain of the propositional function P (x, y)

consists of pairs x and y, where x is 1, 2, or 3 and y is

1, 2, or 3. Write out these propositions using disjunctions

and conjunctions.

a) dx P(x,3) b) Vy P(1,y)

¢) Ay—P(2,y) d) Vx —P(x,2)

Suppose that the domain of Q(x, y, z) consists of triples

x,y,z,wherex =0,1,0r2,y=0or1,andz =0or 1.

Write out these propositions using disjunctions and con-

junctions.

a) VyQ(0, y, 0)

¢) 3z—0(0,0,2)

b) IxQ(x,1,1)
d) Ix—Q(x,0,1)
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32. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in

Exercises 38—42 deal with the translation between system
specification and logical expressions involving quantifiers.

38. Translate these system specifications into English where

.

simple English. (Do not simply use the phrase “It is not
the case that.”)

a) All dogs have fleas.

b) There is a horse that can add.

¢) Every koala can climb.

d) No monkey can speak French.

e) There exists a pig that can swim and catch fish.

Express each of these statements using quantifiers. Then

form the negation of the statement, so that no negation

is to the left of a quantifier. Next, express the negation in

simple English. (Do not simply use the phrase “It is not

the case that.”)

a) Some old dogs can learn new tricks.

b) No rabbit knows calculus.

¢) Every bird can fly.

d) There is no dog that can talk.

e) There is no one in this class who knows French and
Russian.

Express the negation of these propositions using quanti-

fiers, and then express the negation in English.

a) Some drivers do not obey the speed limit.

b) All Swedish movies are serious.

¢) No one can keep a secret.

d) There is someone in this class who does not have a
good attitude.

Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
copsists of all integers.

x(x2 > Xx)

Vx(x >0vx <0)

¢) Vx(x=1)

Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all real numbers.

a) Vx(x? # x)
c) Vx(|x| > 0)
Express each of these statements using predicates and
quantifiers.

b) Vx(x2 #£2)

a) A passenger on an airline qualifies as an elite flyer if
the passenger flies more than 25,000 miles in a year
or takes more than 25 flights during that year.

b) A man qualifies for the marathon if his best previ-
ous time is less than 3 hours and a woman qualifies
for the marathon if her best previous time is less than
3.5 hours.

¢€) A student must take at least 60 course hours, or at least
45 course hours and write a master’s thesis, and re-
ceive a grade no lower than a B in all required courses,
to receive a master’s degree.

d) There is a student who has taken more than 21 credit
hours in a semester and received all A’s.

the predicate S(x, y) is “x is in state y” and where the
domain for x and y consists of all systems and all possible
states, respectively.

a) dxS(x, open)

b) Vx(S(x, malfunctioning) v §(x, diagnostic))

¢) xS(x, open) v xS(x, diagnostic)

d) 3x—S(x, available)

e) Vx—S(x, working)

Translate these specifications into English where F(p) is
“Printer p is out of service,” B(p) is “Printer p is busy,”
L(j) is “Print job j is lost,” and Q(j) is “Print job j is
queued.”

a) 3p(F(p) A B(p)) — AjL())

b) YpB(p) — 3jQ3)

¢ 3j(QU) A L)) — IpF(p)

d) (YpB(p) AVjO()) — 3jL())

Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) When there is less than 30 megabytes free on the hard
disk, a warning message is sent to all users.

b) No directories in the file system can be opened and
no files can be closed when system errors have been
detected.

¢) The file system cannot be backed up if there is a user
currently logged on.

d) Video on demand can be delivered when there are at
least 8 megabytes of memory available and the con-
nection speed is at least 56 kilobits per second.

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) At least one mail message, among the nonempty set
of messages, can be saved if there is a disk with more
than 10 kilobytes of free space.

b) Whenever there is an active alert, all queued messages
are transmitted.

¢) The diagnostic monitor tracks the status of all systems
except the main console.

d) Each participant on the conference call whom the host
of the call did not put on a special list was billed.

Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in
the group if the file system is locked.

¢) The firewall is in a diagnostic state only if the proxy
server is in a diagnostic state.

d) At least one router is functioning normally if the
throughput is between 100 kbps and 500 kbps and
the proxy server is not in diagnostic mode.
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Determine whether Vx(P(x) — Q(x)) and Vx P(x) —
Vx Q(x) are logically equivalent. Justify your answer.

Determine whether Vx (P (x) < Q(x)) and Vx P(x) <
Vx Q(x) are logically equivalent. Justify your answer.

Show that Ix (P (x) v Q(x)) and Ix P(x) v Ax Q(x) are
logically equivalent.

Exercises 46—49 establish rules for null quantification that
we can use when a quantified variable does not appear in part
of a statement.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) (VxP(x)) VvV A=Vx(P(x)Vv A)

b) @xP(x)) v A =3Ix(P(x) Vv A)

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) VxP(x)) AA=Vx(P(x)AA)

b) ExPx) AA=3x(Px)AA)

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) Vx(A— P(x))= A - VxP(x)

b) 3x(A — P(x)) = A — AxP(x)

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) Vx(P(x) > A)=3xP(x) = A

b) Ix(P(x) = A)=VxP(x)— A

Show that Vx P(x) v VxQ(x) and Vx(P(x) v Q(x)) are

not logically equivalent.

Show that 3x P(x) A dx Q(x) and Ax(P(x) A Q(x)) are

not logically equivalent.

As mentioned in the text, the notation 3!x P(x) denotes
“There exists a unique x such that P(x) is true.”

If the domain consists of all integers, what are the truth

values of these statements?

a) Ax(x > 1) b) Ax(xZ=1)

¢) Ilx(x +3=2x) d) Ax(x=x4+1)

What are the truth values of these statements?

a) dxP(x) = IxP(x)

b) VxP(x) » AxP(x)

¢) Ix—-P(x) - —VxP(x)

Write out Ilx P(x), where the domain consists of the in-

tegers 1, 2, and 3, in terms of negations, conjunctions,

and disjunctions.

Given the Prolog facts in Example 28, what would Prolog

return given these queries?

a) ?instructor (chan,math273)

b) ?instructor(patel,cs301)

¢) ?enrolled(X,cs301)

d) ?enrolled(kiko, V)

e) ?teaches (grossman,Y)

56. Given the Prolog facts in Example 28, what would Prolog

57.

58.

return when given these queries?

a) ?enrolled(kevin, ee222)

b) ?enrolled(kiko,math273)

¢) ?instructor (grossman, X)

d) ?instructor (X,cs301)

e) ?teaches (X, kevin)

Suppose that Prolog facts are used to define the predicates
mother(M, Y) and father(F, X), which represent that M
is the mother of Y and F is the father of X, respectively.
Give a Prolog rule to define the predicate sibling(X, Y),
which represents that X and Y are siblings (that is, have
the same mother and the same father).

Suppose that Prolog facts are used to define the predi-
cates mother(M, Y) and Jather(F, X), which represent
that M is the mother of ¥ and F is the father of X,
respectively. Give a Prolog rule to define the predicate
grandfather(X, Y), which represents that X is the grand-
father of Y. [Hint: You can write a disjunction in Prolog
either by using a semicolon to separate predicates or by
putting these predicates on separate lines.]

Exercises 59-62 are based on questions found in the book
Symbolic Logic by Lewis Carroll.

59

60.

61

. Let P(x), O(x), and R(x) be the statements “x is a

ETITS

professor,” “x is ignorant,” and “x is vain,” respectively.
Express each of these statements using quantifiers; log-
ical connectives; and P(x), O(x), and R(x), where the
domain consists of all people.

a) No professors are ignorant.

b) All ignorant people are vain.

¢) No professors are vain.

d) Does (c) follow from (a) and (b)?

Let P(x), Q(x), and R(x) be the statements “x is a clear
explanation,” “x is satisfactory,” and “x is an excuse,”
respectively. Suppose that the domain for x consists of all

English text. Express each of these statements using quan-
tifiers, logical connectives, and P(x), Q(x), and R(x).

a) All clear explanations are satisfactory.
b) Some excuses are unsatisfactory.
¢) Some excuses are not clear explanations.

*d) Does (c) follow from (a) and (b)?

. Let P(x), Q(x), R(x), and S(x) be the statements “x is
a baby,” “x is logical,” “x is able to manage a crocodile,”
and “x is despised,” respectively. Suppose that the domain
consists of all people. Express each of these statements
using quantifiers; logical connectives; and P(x), Q(x),
R(x), and S(x).

a) Babies are illogical.
b) Nobody is despised who can manage a crocodile.
¢) Illogical persons are despised.
d) Babies cannot manage crocodiles.
#*¢) Does (d) follow from (a), (b), and (¢)? If not, is there
a correct conclusion?

L
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62. Let P(x), Q(x), R(x), and S(x) be the statements “x b) No officers ever decline to waltz.

is a duck,” “x is one of my poultry,

" “x is an officer,” ¢) All my poultry are ducks.

and “x is willing to waltz,” respectively. Express each of

these statements using quantifiers; logical connectives; d) My poultry are not officers.
and P(x), Q(x), R(x), and S(x). *e) Does (d) follow from (a), (b), and (c)? If not, is there
a) No ducks are willing to waltz. a correct conclusion?
Nested Quantifiers
Introduction

EXAMPLE 1

In Section 1.4 we defined the existential and universal quantifiers and showed how they can
be used to represent mathematical statements. We also explained how they can be used to
translate English sentences into logical expressions. However, in Section 1.4 we avoided nested
quantifiers, where one quantifier is within the scope of another, such as

Vxdy(x +y = 0).

Note that everything within the scope of a quantifier can be thought of as a propositional function.
For example,

Vx3dy(x +y = 0)

is the same thing as Yx Q(x), where Q(x) is Ay P(x, y), where P(x, y) isx +y = 0.

Nested quantifiers commonly occur in mathematics and computer science. Although nested
quantifiers can sometimes be difficult to understand, the rules we have already studied in
Section 1.4 can help us use them. In this section we will gain experience working with nested
quantifiers. We will see how to use nested quantifiers to express mathematical statements such
as “The sum of two positive integers is always positive.” We will show how nested quantifiers
can be used to translate English sentences such as “Everyone has exactly one best friend” into
logical statements. Moreover, we will gain experience working with the negations of statements
involving nested quantifiers.

Understanding Statements Involving Nested Quantifiers

To understand statements involving nested quantifiers, we need to unravel what the quantifiers
and predicates that appear mean. This is illustrated in Examples 1 and 2.

Assume that the domain for the variables x and y consists of all real numbers. The statement
VxVy(x +y=y+x)

says that x + y = y + x for all real numbers x and y. This is the commutative law for addition
of real numbers. Likewise, the statement

Vxdy(x +y=0)

says that for every real number x there is a real number y such that x + y = 0. This states that
every real number has an additive inverse. Similarly, the statement

VxVyVz(x +(y+2) = (x +y) +2)

is the associative law for addition of real numbers. 4
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EXAMPLE 16  (Requires calculus) Use quantifiers and predicates to express the fact that lim r—a f(x) does
not exist where f(x) is a real-valued function of a real variable x and a belongs to the domain

of f

Solution: To say that limy_, f(x) does not exist means that for all real numbers L,
lim;, f(x) # L. By using Example 8, the statement lim,_,, f(x) # L can be expressed as

“Ve>03>0Vx(0 < |x —a|l <8 — [f(x)—L| <é€).

Successively applying the rules for ne

of equivalent statements

gating quantified expressions, we construct this sequence

—Ve>03>0Vx(0<|x —a|<8 = |f(x) — Ll<e¢)
=3e>0-3>0VxO0<|x —a|<s — |f(x) — L|l<e)

=3e>0V6>0-Vx(0<|x —a|<8 — [f(x)—L]<e)

=3e>0V6>03x =(0<|x —a| <8 — [f(x)—Ll<e)

536>0V8>03x(0<|x—~a|<5/\lf(x)-—lee).

In the last step we used the equivalence —( P — q) = p A —g, which follows from the fifth
equivalence in Table 7 of Section 1.3.
Because the statement “lim,_,, f(x) does not exist” means for all real numbers L,

limy_,, f(x) # L, this can be expressed as

V0I3e>0VY6>03x(0 < |x —a| < SAIf(x)=L|=>e¢).

This last statement says that for every real number L there is a real number € > 0 such that
for every real number § > 0, there exists a real number x such that 0 < [x —a| < § and

If(x) = L] >e.

Exercises Chop 1.5

4

%ns in English.
ZagAxdy O (x, y)

%ranslate these statements into English, where the domain
wecfor each variable consists of all real numbers.

a) VxIy(x < y)
b) VxV¥y(((x = 0) A (y = 0)) — (xy > 0))
€) VxVydz(xy = z)

. Translate these statements into English, where the domain

for each variable consists of all real numbers.
a) IVy(xy =y)

b) VxVy((x 2 0) A (y <0)) = (x — y > 0))
¢) VxVydz(x =y +2)

. Let Q(x, y) be the statement “x has sent an e-mail mes-

sage to y,” where the domain for both x and y consists of
all students in your class. Express each of these quantifi-

%W)}Q(}n »)
VxQ(x, y)

£f) VxVyQ(x, y)

€) VxdyO(x,y)
e) YydxO(x, y)

4. Let P(x, y) be the statement “Student x has taken class

y.” where the domain for x consists of all students in your
class and for y consists of all computer science courses

R

at your school. Express each of these quantifications in
English.

a) IxIAyP(x, y)
¢) VxdyP(x,y)
e) VydxP(x,y)

b) IxVyP(x,y)
d) 3yVxP(x,y)
f) VxVyP(x,y)

. Let W(x, y) mean that student x has visited website ¥,

where the domain for x consists of all students in your

school and the domain for y consists of all websites. Ex-

press each of these statements by a simple English sen-

tence. .

a) W(Sarah Smith, www.att.com)

b) 3xW(x, www.imdb.org)

¢) dyW(osé Orez, y)

d) Iy(W(Ashok Puri, y) A W(Cindy Yoon, y))

e) dyVz(y $# (David Belcher) A (W (David Belcher, z)
= W(y.2)))

£) AxAyVz((x # y) A (W(x, 2) & W(y,2)))

. Let C(x, y) mean that student x is enrolled in class ¥,

where the domain for x consists of all students in your
school and the domain for y consists of all classes being




given at your school. Express each of these statements by
a simple English sentence.

a) C(Randy Goldberg, CS 252)

b) IxC(x, Math 695)

¢) JyC(Carol Sitea, y)

d) 3x(C(x, Math 222) A C(x, CS 252))

e) Ayvz((x # y) A (Cx,2) = C(y,2)))

£) FadyVz((x # y) A (Cx,2) © C(y, )

Let T (x, y) mean that student x likes cuisine y, where the
domain for x consists of all students at your school and
the domain for y consists of all cuisines. Express each of
these statements by a simple English sentence.

a) —T(Abdallah Hussein, Japanese)
b) 3xT (x, Korean) A Vx T (x, Mexican)
¢) Jdy(T(Monique Arsenault, y) Vv

T (Jay Johnson, y))
d) YxVzAy((x #2) = —(T(x, y) AT (2, )
e) IxTVy(T(x,y) < T(z,¥)
£) Vavzay(T(x,y) < T(z,y))
Let Q(x, y) be the statement “student x has been a con-
testant on quiz show y.” Express each of these sentences
in terms of Q(x, y), quantifiers, and logical connectives,
where the domain for x consists of all students at your
school and for y consists of all quiz shows on television.

here is a student at your school who has been a con-
estant on a television quiz show.
#§ No student at your school has ever been a contestant
on a television quiz show.
¢) There is a student at your school who has been a con-
testant on Jeopardy and on Wheel of Fortune.
d) Every television quiz show has had a student from
your school as a contestant.
) Atleast two students from your school have been con-
testants on Jeopardy.

9. Let L(x, y) be the statement “x loves y,” where the do-
main for both x and y consists of all people in the world.
Use quantifiers to express each of these statements.

a) Everybody loves Jerry.

b) Everybody loves somebody.

¢) There is somebody whom everybody loves.

d) Nobody loves everybody.

¢) There is somebody whom Lydia does not love.

f) There is somebody whom no one loves.

g) There is exactly one person whom everybody loves.

h) There are exactly two people whom Lynn loves.

i) Everyone loves himself or herself.

j) There is someone who loves no one besides himself
or herself.

Let F(x, y) be the statement “x can fool y,” where the
domain consists of all people in the world. Use quantifiers
to express each of these statements.

a) Everybody can fool Fred.

b) Evelyn can fool everybody.

¢) Everybody can fool somebody.

d) There is no one who can fool everybody.
e) Everyone can be fooled by somebody.
f) No one can fool both Fred and Jerry.

g) Nancy can fool exactly two people.

@

10

11

12
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h) Thereisexactly one person whom everybody can fool.

i) No one can fool himself or herself.

j) There is someone who can fool exactly one person

besides himself or herself.

Let S(x) be the predicate “x is a student,” F (x) the pred-

icate “x is a faculty member,” and A(x, y) the predicate

“x has asked y a question,” where the domain consists of

all people associated with your school. Use quantifiers to

express each of these statements.

a) Lois has asked Professor Michaels a question.

b) Every student has asked Professor Gross a question.

¢) Every faculty member has either asked Professor

Miller a question or been asked a question by Pro-
fessor Miller.

d) Some student has not asked any faculty member a

_question.

e) There is a faculty member who has never been asked
a question by a student.

f) Some student has asked every faculty member a ques-

tion.

g) There is a faculty member who has asked every other

faculty member a question.

h) Some student has never been asked a question by a

faculty member.

Let I (x) be the statement “x has an Internet connection”

and C(x, y) be the statement “x and y have chatted over

the Internet.” where the domain for the variables x and y

consists of all students in your class. Use quantifiers o

express each of these statements.

a) Jerry does not have an Internet connection.

b) Rachel has not chatted over the Internet with Chelsea.

¢) Jan and Sharon have never chatted over the Internet.

d) No one in the class has chatted with Bob.

¢) Sanjay has chatted with everyone except Joseph.

f) Someone in your class does not have an Internet con-
nection.

g) Not everyone in your class has an Internet connec-
tion.

h) Exactly one student in your class has an Internet con-
nection.

i) Everyone except one student in your class has an In-
ternet connection.

j) Everyone in your class with an Internet connection
has chatted over the Internet with at least one other
student in your class.

k) Someone in your class has an Internet connection but
has not chatted with anyone else in your class.

1) There are two students in your class who have not
chatted with each other over the Internet.

m) There is a student in your class who has chatted with
everyone in your class over the Internet.

n) There are at least two students in your class who have
not chatted with the same person in your class.

o) There are two students in the class who between them
have chatted with everyone else in the class.
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13. Let M(x, y) be “x has sent y an e-mail message” and

14

15

h

T(x, y) be “x has telephoned y,” where the domain con-
sists of all students in your class. Use quantifiers to ex-
press each of these statements, (Assume that all e-mail
messages that were sent are received, which is not the
things often work.)

Chou has never sent an e-mail message to Koko.

b) Arlene has never sent an e-mail message 1o or tele-
phoned Sarah.

¢) José has never received an e-mail message from Deb-

orah.

Every student in your class has sent an e-mail mes-

sage to Ken.

¢) No one in your class has telephoned Nina.

f) Everyone in your class has either telephoned Avi or
sent him an e-mail message.

g) Thereisastudent in your class who has sent everyone
else in your class an e-mail message.

h) There is someone in your class who has either sent an
e-mail message or telephoned everyone else in your
class.

i) There are two different students in your class who
have sent each other e-mail messages.

J) There is a student who has sent himself or herself an
e-mail message.

k) There is a student in your class who has not received
an e-mail message from anyone else in the class and
who has not been called by any other student in the
class.

1} Every student in the class has either received an e-

mail message or received a telephone call from an-

other student in the class.

There are at least two students in your class such that

one student has sent the other e-mail and the second

student has telephoned the first student.

There are two different students in your class who

between them have sent an e-mail message to or tele-

phoned everyone else in the class.

Use quantifiers and predicates with more than one vari-

able to express these statements.

a) There is a student in this class who can speak Hindi.

b) Every student in this class plays some sport.

¢) Some student in this class has visited Alaska but has
not visited Hawaii.

d) Allstudents in this class have learned at least one pro-
gramming language.

e) There is a student in this class who has taken ev-
ery course offered by one of the departments in this
school.

f) Some student in this class grew up in the same town
as exactly one other student in this class.

g) Every student in this class has chatted with at least
one other student in at least one chat group.

Use quantifiers and predicates with more than one vari-

able to express these statements.

a) Every computer science student needs a course in dis-
crete mathematics.

d)

m)

n)

16

17

*d)

b) There is a student in this class who owns a personal
computer.

¢) Every student in this class has taken at least one com-
puter science course.

d) There is a student in this class who has taken at least
one course in computer science.

e) Every student in this class has been in every building
on campus. .

f) There is a student in this class who has been in every
room of at least one building on campus.

g) Every student in this class has been in at least one
room of every building on campus.

A discrete mathematics class contains 1 mathematics ma-
Jor who is a freshman, 12 mathematics majors who are
sophomores, 15 computer science majors who are sopho-
mores, 2 mathematics majors who are juniors, 2 computer
science majors who are juniors, and 1 computer science-
major who is a senior. Express each of these statements in
terms of quantifiers and then determine its truth value.

a) There is a student in the class who is a junior.

b) Every student in the class is a computer science major.

¢} There is a student in the class who is neither a math-

ernatics major nor a junior.

Every student in the class is either a sophomore or a

computer science major. »

e) There is a major such that there is a student in the class
in every year of study with that major.

Express each of these system specifications using predi-
cates, quantifiers, and logical connectives, if necessary.

a) Every user has access to exactly one mailbox.

b) There is a process that continues to run during all error
conditions only if the kernel is working correctly.

¢) All users on the campus network can access all web-

sites whose url has a .edu extension.

There are exactly two systems that monitor every re-

mote server.

d

18. Express each of these system specifications using predi-

19

cates, quantifiers, and logical connectives, if necessary.

a) At least one console must be accessible during every
fault condition.

b) The e-mail address of every user can be retrieved
whenever the archive contains at least one message
sent by every user on the system.

¢) For every security breach there is at least one mecha-
nism that can detect that breach if and only if there is
a process that has not been compromised.

d) There are at least two paths connecting every two dis-
tinct endpoints on the network.

e) No one knows the password of every user on the sys-
tem except for the system administrator, who knows
all passwords.[

Express each of these statements using mathematical and

logical operators, predicates, and quantifiers, where the

domain consists of all integers.

a) The sum of two negative integers is negative.

b) The difference of two positive integers is not neces-
sarily positive.




¢) The sum of the squares of two integers is greater than
or equal to the square of their sum.

d) The absolute value of the product of two integers is
the product of their absolute values.

20. Express each of these statements using predicates, quan-
tifiers, logical connectives, and mathematical operators
where the domain consists of all integers.

a) The product of two negative integers is positive.

b) The average of two positive integers is positive.

¢) The difference of two negative integers is not neces-
sarily negative.

d) The absolute value of the sum of two integers does
not exceed the sum of the absolute values of these
integers.

21. Use predicates, quantifiers, logical connectives, and

mathematical operators to express the statement that ev-

ery positive integer is the sum of the squares of four in-
tegers.

22. Use predicates, quantifiers, logical connectives, and

mathematical operators to express the statement that there

is a positive integer that is not the sum of three squares.

23. Express each of these mathematical statements using
predicates, quantifiers, logical connectives, and mathe-
matical operators.

a) The product of two negative real numbers is positive.

b) The difference of a real number and itself is zero.

¢) Every positive real number has exactly two square
roots.

d) A negative real number does not have a square root
that is a real number.

- 24. Translate each of these nested quantifications into an En-

glish statement that expresses a mathematical fact. The

domain in each case consists of all real numbers.

2 Yy +y =)

) VxVy((x 20) A (y <0)) > (x —y > 0)

¢) IAy(x<OAQY =N Ax—y>0)

d) VxVy((x #0) A (y # 0) < (xy #0))

25. Translate each of these nested quantifications into an En-

glish statement that expresses a mathematical fact. The

domain in each case consists of all real numbers.

a) IxVy(xy =y)

b) VaVy(((x < 0) A (¥ < 0)) — (xy > 0))

0 Iy > Y A(x <)

d) VxVydz(x +y=12)

26. Let O(x, y) be the statement “x + y = x — y.” If the do-

main for both variables consists of all integers, what are

the truth values?

a) o(1, 1)

¢) Vy0(l,y)

e) IxIyQ(x,y)

g) IyVx0(x, y)

i) VxVyQ(x,y)

27. Determine the truth value of each of these statements if

the domain for all variables consists of all integers.

a) Yadm(n? < m) b) InVmn < m?)

¢) Vadm(n +m =0) d) InvVm(nm = m)

b) 0(2,0)

d) IxQ0(x,2)
f) VxdyQ(x, y)
h) VydxQ(x, y)
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e) Indmmn?+m?=75) £) Indmn® +m? =6)
g) InIm(n+m=4An—-—m=1)
h) Indmmn+m=4An—m=2)
i) YaVmap(p = (m+n)/2)
28. Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.
a) Vxdy(x* =) b) Vxdy(x = y*)
¢) IxVy(xy =0) d) IxAy(x+y#y + x)
e) Vx(x #0— Jy(xy=1))
f) AVy(y #0—>xy=1)
g) Vxdy(x+y=1)
h) dx3Jy(x +2y =2A2x+4y =5)
) Vxdy(x+y=2A2x—-y=1)
§) YaV¥yIz(z = (x +»)/2)
29. Suppose the domain of the propositional function P (x, y)
consists of pairs x and y, where x is 1,2, or 3 and y is
1,2, or 3. Write out these propositions using disjunctions
and conjunctions.
a) VxVyP(x,y) b) Ix3yP(x,y)
¢) IxVyP(x,y) d) VyaxP(x,y)
Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).
a) —dyIxP(x, y) b) —VxIyP(x, y)
¢) —Iy(Q(y) AVx—R(x,y))
d) —Iy@xR(x,y) VV¥xS(x,y))
e) —Ay(¥x3zT(x,y,2) v IxVzU(x,y,2))
31. Express the negations of each of these statements so that
all negation symbols immediately precede predicates.
a) VxAyvzT(x,y,z)
b) Vx3IyP(x,y) vV¥xIy0(x,y)
¢) Vx3Iy(P(x,y) AJzR(x,y,2))
d) Vx3y(P(x,y) —> Q(x,y))
Express the negations of each of these statements so that
all negation symbols immediately precede predicates.
a) JzVyvxT(x,y,z)
b) x3yP(x, y) AVxVYyQ(x,y)
¢) xIy(Q(x, y) < Oy, x))
d) Vydxdz(T(x, y,2) vV Q(x,y))
33. Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).
a) ~VxVyP(x,y) b) ~VydxP(x,y)
i VyVx(P(x, ) V Q(x, y))
(@x3y—P(x, y) AVXVYQ(x, ¥))
T —Vx(3yVzP(x,y,2) AIVyP(x,y,2))
34. Find a common domain for the variables x, y, and z
for which the statement VxVy((x # y) — Vz((z = x) V
(z = ))) is true and another domain for which it is false.

30

32

H

35. Find a common domain for the variables x,y.z,
and w for which the statement VxVyVz3w((w # x) A
(w # y) A (w # 2)) is true and another common domain
for these variables for which it is false.
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36. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.””)

a) No one has lost more than one thousand dollars play-

ing the lottery.
b) There is a student in this class who has chatted with

exactly one other student.
¢) No student in this class has sent e-mail to exactly two
other students in this class.
d) Some student has solved every exercise in this book.
e) No student has solved at least one exercise in every

section of this book.

37. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

Every student in this class has taken exactly two math-

matics classes at this school.
¥ Someone has visited every country in the world except
Libya.
¢) Noone has climbed every mountain in the Himalayas.
d) Every movie actor has either been in a movie with
Kevin Bacon or has been in a movie with someone
who has been in a movie with Kevin Bacon.

Express the negations of these propositions using quan-
tifiers, and in English.

a) Every student in this class likes mathematics.

b) There is a student in this class who has never seen a

computer.
¢) There is a student in this class who has taken every

mathematics course offered at this school.
d) There is a student in this class who has been in at least

one room of every building on campus.

39. Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) VaVy(x2 =y > x =y)

b) VxIy(y? = x)

¢) VxVy(xy > x)

Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) Vxdy(x = 1/y)

b) VxaAy(y? — x < 100)

©) Vavy@? # y?)

Use quantifiers to express the associative law for multi-

plication of real numbers.

42. Use quantifiers to express the distributive laws of multi-

plication over addition for real numbers.

Use quantifiers and logical connectives to express the fact

that every linear polynomial (that is, polynomial of de-

gree 1) with real coefficients and where the coefficient of

x is nonzero, has exactly one real root.

44. Use quantifiers and logical connectives to express the fact
that a quadratic polynomial with real number coefficients
has at most two real roots.

38

40

41

43

45. Determine the truth value of the statement Vx3y(xy = 1)
if the domain for the variables consists of
a) the nonzero real numbers.
b) the nonzero integers.
¢) the positive real numbers.
46. Determine the truth value of the statement IxVy(x < y2)
if the domain for the variables consists of
a) the positive real numbers.
b) the integers.
¢) the nonzero real numbers.
Show that the two statements —3IxVyP(x,y) and
Vx3dy—P(x, y), where both quantifiers over the first vari-
able in P(x, y) have the same domain, and both quanti-
fiers over the second variable in P(x, y) have the same
domain, are logically equivalent.
Show that Vx P(x) VvV Vx Q(x) and VxVy(P(x) vV Q(¥)),
where all quantifiers have the same nonempty domain,
are logically equivalent. (The new variable y is used to
combine the quantifications correctly.)

#49, a) Show that Vx P(x) A 3xQ(x) is logically equivalent
to Vx3y (P(x) A Q(»)), where all quantifiers have
the same nonempty domain.

b) Show that Yx P(x) v IxQ(x) is equivalent to Vx3Iy
(P(x) v Q()), where all quantifiers have the same
nonempty domain.

A statement is in prenex normal form (PNF) if and only if it
is of the form

47

48

O1x1Q2x2 - Qpxx P(x1, x2, .-, Xk),

where each Q;,i = 1,2, ..., k, is either the existential quan-
tifier or the universal quantifier, and P(xy, ..., x¢) is a pred-
icate involving no quantifiers. For example, IxVy(P(x, y) A
Q(y)) is in prenex normal form, whereas Ix P(x) v Vx Q(x)
is not (because the quantifiers do not all occur first).

Every statement formed from propositional variables,
predicates, T, and F using logical connectives and quan-
tifiers is equivalent to a statement in prenex normal form.
Exercise 51 asks for a proof of this fact.

#50. Put these statements in prenex normal form. [Hint: Use
logical equivalence from Tables 6 and 7 in Section 1.3,
Table 2 in Section 1.4, Example 19 in Section 1.4,
Exercises 45 and 46 in Section 1.4, and Exercises 48 and
49.]

a) dxP(x) v3IxQ(x) vV A, where A is a proposition not
involving any quantifiers.

b) =(VxP{x) VV¥xQ(x))

¢) dAxP(x) — IxQ0(x)

#% 51, Show how to transform an arbitrary statement to a state-
ment in prenex normal form that is equivalent to the given
statement. (Note: A formal solution of this exercise re-
quires use of structural induction, covered in Section 5.3.)

#52. Express the quantification 3!x P(x), introduced in Sec-
tion 1.4, using universal quantifications, existential quan-
tifications, and logical operators.

YR g



: Exercises C!’\Cup o 1

1.7 Introduction to Proofs 91

“1. Useadirect proof to show that the sum of two odd integers

is even.
se a direct proof to show that the sum of two even inte-
gers is even.

3. Show that the square of an even number is an even number
using a direct proof.

4. Show that the additive inverse, or negative, of an even
number is an even number using a direct proof.

5, Prove that if m +n and n -+ p are even integers, where
m, n, and p are integers, then m + p is even. What kind
of proof did you use?

6. Use a direct proof to show that the product of two odd
numbers is odd.

7. Use a direct proof to show that every odd integer is the
difference of two squares.

8. Prove that if n is a perfect square, then n 4 2 is not a
perfect square.

9, Use a proof by contradiction to prove that the sum of an
irrational number and a rational number is irrational.

Use a direct proof to show that the product of two rational
numbers is rational.

o
*

11. Prove or disprove that the product of two irrational num-
bers is irrational.

-
1

Prove or disprove that the product of a nonzero rational
number and an irrational number is irrational.

jay
W
:

Prove that if x is irrational, then 1/x is irrational.
Prove that if x is rational and x 3 0, then 1/x is rational.

15. Use a proof by contraposition to show thatif x +y > 2,
where x and y are real numbers, thenx > lory > L.

-
>

16. Prove that if m and n are integers and mn is even, then m
is even or n is even.

247 Show that if n is an integer and n* + 5 is odd, then n is
even using

a) a proof by contraposition.

b) a proof by contradiction.

oy
ot

Prove that if # is an integer and 3 + 2 is even, then n is
even using

a) a proof by contraposition.

b) a proof by contradiction.

Prove the proposition P(0), where P(n) is the proposi-
tion “If n is a positive integer greater than 1, then n%>n”
What kind of proof did you use? '

20. Prove the proposition P(1), where P(n) is the proposi-
tion “If » is a positive integer, then n? > n.” What kind
of proof did you use?

19

21

Let P (n) be the proposition “If @ and b are positive real
numbers, then (a + b)" > a" + b"*.” Prove that P(l) is
true. What kind of proof did you use?

Show that if you pick three socks from a drawer contain-
ing just blue socks and black socks, you must get either
a pair of blue socks or a pair of black socks.

22

23. Show that at least ten of any 64 days chosen must fall on
the same day of the week.

24. Show that at least three of any 25 days chosen must fall
in the same month of the year.

25. Use a proof by contradiction to show that there is-no ratio-
nal number r for which 2 + r + 1 = 0. [Hint: Assume
that r = a/b is aroot, where a and b are integers and a/b
is in lowest terms. Obtain an equation involving integers
by multiplying by b*. Then look at whether a and b are
each odd or even.]

Prove that if » is a positive integer, then # is even if and
only if 7n + 4 is even.

" Prove that if # is a positive integer, then n is odd if and
only if 5n + 6 is odd.

26

28. Prove that m? = n2 ifand only if m = norm = —n.

29, Prove or disprove that if m and n are integers such that
mn=1,theneitherm =1andn =1, orelse m = —1
and n = —1.

30,

Show that these three statements are equivalent, where a
and b are real numbers: (i) a is less than b, (ii) the average
of a and b is greater than a, and (iii) the average of a and
b is less than b,

Show that these statements about the integer x are equiv-
alent: (i) 3x + 2 is even, (if) x + 5 is odd, (i) x2 is even.
32. Show that these statements about the real number x are
equivalent: (i) x is rational, (if) x /2 is rational, (iii) 3x—1
is rational.

31

33. Show that these statements about the real number x are

equivalent: (i) x is irrational, (if) 3x +2 is irrational,

(iii) x /2 is irrational.

34, Is this reasoning for finding the solutions of the equa-
tion v/2x2 — 1 = x correct? (1) +/2x2 — 1 = x is given;
(2) 2x%2 — 1 = x2, obtained by squaring both sides of (1);
(3) x2 — 1 =0, obtained by subtracting x? from both
sides of (2); (4) (x — D)(x + 1) = 0, obtained by factor-
ing the left-hand side of -1 x=lorx=-1,
which follows because ab = 0 implies that a =0 or
b=0.

35, Are these steps for finding the solutions of v/x +3 =
3 — xcorrect? (/) /x +3 =3 —xisgiven; Q) x +3 =
x% — 6x + 9, obtained by squaring both sides of (1); (3)
0 = x? — 7x + 6, obtained by subtracting x + 3 from
both sides of (2); (4) 0 = (x — 1)(x — 6), obtained by
factoring the right-hand side of (3); (5) x = L or x = 6,
which follows from (4) because ab = 0 implies that
a=0o0rb=0. :

36. Show that the propositions py, p2, p3, and ps can be
shown to be equivalent by showing that py < p4, p2 <>
p3, and pi < p3.

Show that the propositions p1, p2, p3, p4, and ps can
be shown to be equivalent by proving that the conditional
statements p| — pa, p3 —> pP1, Ppa —> P2, P2 > ps,and
p5 —> p3 are true.

37

.
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38. Find a counterexample to the statement that every posi-

tive integer can be written as the sum of the squares of
three integers.

39. Prove that at least one of the real numbers a;, aa, ..., a,

is greater than or equal to the average of these numbers.
What kind of proof did you use?

40. Use Exercise 39 to show that if the first 10 positive inte-

gers are placed around a circle, in any order, there exist

Proof Methods and Strategy

41.

42.

three integers in consecutive locations around the circle
that have a sum greater than or equal to 17.

Prove that if n is an integer, these four statements are
equivalent: (i) n is even, (ii) n + 1 is odd, (iii) 3n + 1 is
odd, (iv) 3n is even.

Prove that these four statements about the integer n are
equivalent: () n?isodd, (i) | — n is even, (ifi) n? is odd,
@iv) n? + 1 is even.

Introduction

hsseseman

In Section 1.7 we introduced many methods of proof and illustrated how each method can be
used. In this section we continue this effort. We will introduce several other commonly used proof

methods, including the method of proving a theorem by considering different cases separately.
We will also discuss proofs where we prove the existence of objects with desired properties.

In Section 1.7 we briefly discussed the strategy behind constructing proofs. This strategy
includes selecting a proof method and then successfully constructing an argument step by step,
based on this method. In this section, after we have developed a versatile arsenal of proof
methods, we will study some aspects of the art and science of proofs. We will provide advice
on how to find a proof of a theorem. We will describe some tricks of the trade, including how
proofs can be found by working backward and by adapting existing proofs.

When mathematicians work, they formulate conjectures and attempt to prove or disprove
them. We will briefly describe this process here by proving results about tiling checkerboards
with dominoes and other types of pieces. Looking at tilings of this kind, we will be able to
quickly formulate conjectures and prove theorems without first developing a theory.

We will conclude the section by discussing the role of open questions. In particular, we
will discuss some interesting problems either that have been solved after remaining open for
hundreds of years or that still remain open.

Exhaustive Proof and Proof by Cases

(prvpaVv---Vpy)—>gq

the tautology

Sometimes we cannot prove a theorem using a single argument that holds for all possible cases.
We now introduce a method that can be used to prove a theorem, by considering different cases
separately. This method is based on a rule of inference that we will now introduce. To prove a
conditional statement of the form

[((mvprVv---vp)=qlelpr=>AP2—=> @ N A(pn—> q)]

can be used as a rule of inference. This shows that the original conditional statement with
a hypothesis made up of a disjunction of the propositions p1, p2. ...
proving each of the n conditional statements p; — ¢, i = 1,2, ..., n, individually. Such an
argument is called a proof by cases. Sometimes to prove that a conditional statement p — ¢ is
true, it is convenient to use a disjunction p; V pa V -+ - V p, instead of p as the hypothesis of
the conditional statement, where p and p Vv p2 vV --- V p, are equivalent.

, Pn can be proved by




