The Equipment-Replacement Problem

Consider a piece of equipment, say a car, that has to be operated throughout a planning
horizon of N periods. Suppose that each period corresponds to one year; and that we are
required to make a decision as to whether or not to replace the car at the beginning of
every year. The problem of interest is to determine an optimal replacement policy under
the following set of assumptions.

e The annual operating cost of an i-year-old car is ¢(i), where i =1, 2, ..., N.
e The price of a new car is p.
e The trade-in value of an i-year-old car is ¢(i), for i =1, 2, ..., N.

e The salvage value of an i-year-old car at the end of year N is s(i), fori =1, 2, ..., N.

To illustrate these assumptions, let us consider a simple numerical example. Suppose a car
is needed for three years; that is, suppose N = 3. At the beginning of the first year, we
have a 2-year-old car. The annual cost of operating a car is a function of its age; and this
cost function is given by: ¢(0) = 10, ¢(1) = 20, ¢(2) = 40, ¢(3) = 60, and ¢(4) = 70. The
fact that these costs are increasing is a reflection of aging. Since the operating costs are
increasing, it may become more cost effective to replace a car after it has been in operation
for some periods. The price of a new car is 60, i.e., p = 60. (Our solution below can be
easily adapted to reflect price variations over time.) The trade-in value of a used car is a
function of its age at the time of trade in; and this function is given by: #(1) = 30, ¢(2) = 20,
t(3) = 15, and t(4) = 10. These trade-in values are decreasing, as a reflection of the decline
in desirability of a car over time. Finally, a car will no longer be needed at the end of year
N; therefore, the car in service at that time will be salvaged. The salvage value of a used car
is again a function of its age; and this function is given by: s(1) = 20, s(2) = 15, s(3) = 10,
s(4) = 0, and s(5) = 0. Like the trade-in values, the salvage values are also decreasing.
Moreover, notice that the salvage value of a car, at any given age, is less than the trade-in
value of a car with the same age.

A replacement policy is a specification of a sequence of “keep” or “replace” actions, one for
each period. Two simple examples are the policy of replacing the car every year and the
policy of keeping the first car until the end of period N. An optimal policy is a policy that
achieves the smallest total net cost of ownership over the entire planning horizon.

To illustrate the calculation of total net cost, consider the policy of replacing the car at the
beginning of every year. Recall that our initial condition is to start with a 2-year-old car.
If this car is traded in, then we will pay p for a new car, receive ¢(2) from the trade-in, and

incur ¢(0) for operating the new car (at age 0). It follows that the net cost for the first year



is given by p —¢(2) + ¢(0). Similarly, for both the second and the third year, the annual net
cost is given by p — (1) + ¢(0). Finally, since the car in service is salvaged, at age 1, at the
end of year 3 (or at the beginning of year 4), we will receive a terminal payment of s(1).
Hence, the total net cost over the entire planning horizon is:

[p —t(2) +c(0)] + [p — £(1) + c(0)] + [p — t(1) + ¢(0)] — (1)
= [60 — 20 + 10] + [60 — 30 + 10] + [60 — 30 + 10] — 20
= 110.

As a second example, the total net cost for the policy of never replacing the car can be
easily calculated as:

e(2) + ¢(3) + ¢(4) — s(5) = 40 + 60 + 70 — 0 = 170.

It follows that this policy is worse than the previous one. Now, with two available actions for
each year, the total number of possible policies is finite, and it is equal to 22 = 8. Therefore,
continuation of similar calculations for the remaining 6 policies will eventually lead to the
identification of the optimal policy. However, for problems with a longer planning horizon,
brutal enumeration will be too time consuming.

We now describe how to derive the optimal policy for this problem using dynamic program-
ming. The solution procedure will be organized into four steps:

1. Definition of appropriate stages and states.
2. Definition of the optimal-value function.

3. Construction of a recurrence relation.

S

. Recursive Computation.

Stages and States
Since there is one decision per year, it is natural to consider each year a stage.
We shall refer to the year count (or index) as the stage variable.

The definition of states requires a little bit more thought. As noted in our discussion of the
elementary path problem, the state information corresponds to a specification of “where we
are” within a given stage. So, what is the appropriate definition of states in this problem?

An extremely helpful notion in this regard is to ask the so-called consultant question. What
this means is explained as follows. Imagine yourself as a consultant who is hired at the



beginning of, say, year k, where 1 < k < N. Suppose you are charged with making all
remaining decisions from year k to the end, regardless of what has been done prior to your
hiring. Then, as the consultant, it is important to ask yourself: What is the minimal amount
of information that will enable me to make these remaining decisions? The conventional
wisdom is that the “correct” answer to this consultant question invariably motivates the
appropriate state definition.

A little bit of reflection should convince you that the answer to the consultant question in
the context of the equipment-replacement problem is the age of the car in service at the end
of year k — 1, or equivalently, at the beginning of year k. It follows that we should define
the age as the state.

We shall refer to the age of the car in service at the beginning of a year as the state variable.

Optimal-Value Function

Recall that the optimal-value function is a function that returns, for any given pair of
stage and state, the best possible total cost from that point to the end. With the stage and
state variables appropriately defined, the definition of the optimal-value function is a simple
matter of adapting this statement to the particular context of a given problem. That is, we
will define

V(i) = the minimal total net cost from year k to the end of year N, starting with an
i-year-old car in year k.

Our goal, in the particular numerical example above, is to determine V;(2) via a stage-by-
stage recursive computation.

Recurrence Relation

Imagine being at the beginning of year k£ with an ¢-year-old car. There are two available
actions: keep or replace (the car).

Suppose the action chosen is to keep the i-year-old car. Then, the immediate one-stage cost
is simply ¢(7). Since the next stage and state as a result of this action is k 4+ 1 and i + 1,
the minimal total future net cost from that point to the end is, by definition, Viy1(i + 1).
It follows that the best possible total net cost associated with the keep action is given by
c(i) + Vi1 (i + 1).

Suppose, on the other hand, the action chosen is to replace the i-year-old car. Then, the
immediate one-stage cost is the sum of: p (the price of a new car), —t(i) (the negative of

the revenue from trading in the i-year-old car), and ¢(0) (the operating cost of a new car).



Since the next stage and state as a result of this action is k£ + 1 and 1, the minimal total
future net cost from that point to the end is, by definition, Viy1(1). It follows that the best
possible total net cost associated with the replace action is given by p—t(i) +¢(0) + Vi11(1).

Since our goal is to minimize the total net cost, the recurrence relation is:

Vie(i) = min [c(?) + Vis1(t + 1), p — t(i) + ¢(0) + Viey1 (1)] .

With the recurrence relation in place, the final step of the solution procedure consists of
the recursive computation of the Vi (i)’s.

Computation

We begin with the specification of the boundary condition. For this purpose, it is convenient
to view the end of year 3 as the beginning of a final stage 4, where the only available action
is to salvage the car in service. Since the revenue received from salvaging a car can be
interpreted as a negative cost, this yields the boundary condition specified in the table
below.
Stage 4: Vi (4)
—20
—15
-10
0
0
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Note that the highest possible state is 5. This is a consequence of the fact that we begin
year 1 with a 2-year-old car and the planning horizon is 3 years.

We now consider stage 3, where the highest possible state is 4. For state 1, the one-stage
costs associated with the keep and replace actions are ¢(1) = 20 and p — ¢(1) 4+ ¢(0) =
60 — 30 + 10 = 40, respectively. For state 2, the one-stage costs associated with the keep
and replace actions are ¢(2) = 40 and p — #(2) + ¢(0) = 60 — 20 + 10 = 50, respectively.
For state 3, the one-stage costs associated with the keep and replace actions are ¢(3) = 60
and p — t(3) + ¢(0) = 60 — 15 + 10 = 55, respectively. Finally, for state 4, the one-stage
costs associated with the keep and replace actions are ¢(4) = 70 and p — t(4) 4+ ¢(0) =
60 — 10 + 10 = 60, respectively. Substitution of these one-stage costs and the relevant
Via(i)’s from the stage-4 table above into the recurrence relation

Vi (i) = min[e(d) + Va(i + 1), p — (i) + ¢(0) + Va(1)]



now yields the table below.

Stage 3: Actions
i Keep Replace V(i) | Optimal Action
1| 20+ (-15)=5 40+ (—20) =20 5 Keep
2 40 + (—10) =30 50+ (—20) = 30 30 | Keep or Replace
3 60 4+ 0 = 60 55 + (—20) =35 35 Replace
4 70+0=70 60+ (—20) =40 40 Replace

Note that for state 2, the costs associated with the keep and replace actions are tied at 30;
therefore, both actions are optimal.

Next, we move back one more stage to stage 2, where the highest possible state is 3. For all
three states, the one-stage costs associated with the keep and replace actions are identical to
the ones computed earlier in stage 3. Substitution of these one-stage costs and the relevant
V3(i)’s from the stage-3 table above into the recurrence relation

Va(i) = min [e(i) + Va(i + 1), p — £(i) 4 ¢(0) + V3(1)]

yields the table below.

Stage 2: Actions
7 Keep Replace V(i) | Optimal Action
1 204+30=50 40+5=45 45 Replace
2 404+35=75 50+45=255 55 Replace
3 604+ 40 =100 55+5 =060 60 Replace

It follows that we should replace the car in service regardless which state we happen to be
in within this stage.

Finally, in stage 1, the only state is 2. Substitution of ¢(2) = 40, p — t(2) + ¢(0) =
60 — 20 + 10 = 50, Va(1) = 45, and V2(3) = 60 into the recurrence relation

Vi(2) = min [¢(2) + Va(3), p — £(2) + ¢(0) + Va(1)]

yields the table below.

Stage 1: Actions
1 Keep Replace Vi(i) | Optimal Action
2 40460 =100 5H0+45=95 95 Replace

Since V1(2) = 95, we conclude that the minimal total net cost from year 1 to the end of
year 3, starting with a 2-year-old car in year 1, is 95.

The sequence of optimal actions can be read from the above tables sequentially as follows.
An inspection of the stage-1 table shows that we should immediately replace the original



2-year-old car. This implies that the age of the car in service at the start of year 2 will be
1. Next, an inspection of the first row of the stage-2 table shows that we should replace
again in year 2. Finally, from the first row of the stage-3 table, we see that we should keep
the 1-year-old car at the start of year 3. Thus, the optimal policy prescribes the following
sequence of actions: replace, replace, and keep. This completes the solution of our problem.

Discussion

A careful review of our calculations shows that V5(2), V3(3), and V4 (4) are never invoked in
the recursive computation. Therefore, if one strives for absolute economy in computation,
then the calculations associated with these three optimal values can be avoided. In practice,
however, it may not be desirable to do so, because a characterization of the precise set of
states that are actually needed in every stage can be rather cumbersome.

The recursive computation above can also be done visually via a network representation of
the problem. The idea is to represent each stage and state combination as a node embedded
in the two-dimensional coordinate system, and to represent each action as an arc. Thus,
state 2 in stage 1, for example, will be represented by a node at (1,2); and the keep and
replace actions at state 2 in stage 1 will be represented by two arcs that connect (1,2)
with (2,3) and (2, 1), respectively. Moreover, the one-stage costs associated with these two
actions, namely 40 and 50, can be thought of as the travel distances from (1, 2) to (2,3) and
(2,1), respectively. It follows that our problem is equivalent to that of finding the shortest
path between node (1,2) and any of the nodes (4,5), (4,3), (4,2), and (4,1) (which have
“terminal distances” 0, —10, —15, and —20, respectively) in the resulting network. Hence,
the optimal values can be computed directly on the network, in a manner similar to what
was done in Figure DP-2. The results are shown in Figure DP-5. You should verify that
the optimal values in Figure DP-5 are identical to those presented in the series of tables
above.

A little bit of reflection should convince you that, in fact, every dynamic program is con-
ceptually equivalent to an elementary path problem.

For a problem with a large N, it is not difficult to write a computer program, or to use a
spreadsheet program such as Excel, to carry out the required calculations on the basis of
the recurrence relation.

For additional realism, one may argue that the price of a new car should depend on the
time period. In other words, it may be desirable to replace p by a set of p’s, where py, is the
price of a new car in year k. Such a scenario can be easily accommodated in our solution
procedure by revising the recurrence relation to:

Vio(i) = min [c(d) + Vg1 (i + 1), pi — £(6) + c(0) + Viegr (1)] -



