
The Production-Planning Problem, Revisited

Consider the production-planning problem discussed in Section 2.1. In addition to the
standard linear-programming formulation, we observed in Exercise 8.1-9 that a problem of
this type can also be formulated and solved as a transportation problem. Our aim here is
to show that a third approach to the solution of this problem is via dynamic programming.

We shall not repeat the statement of the problem here. It is therefore a good idea to quickly
review the previous description. The notation will also stay the same. To demonstrate the
flexibility of a dynamic-programming formulation, we will, however, relax the assumption
of having no setup/fixed costs for production. More specifically, let

ck(x) = the total cost of producing x units of the product in month k, for k = 1, 2, . . .,
12;

then, the new assumption is

ck(x) =

{
0 if x = 0,

sk + ckx if x > 0,

where sk is the setup cost (assumed given) for production in month k. In contrast with the
original assumption of ck(x) = ckx for all x ≥ 0, this cost function is nonlinear. It follows
that a linear-programming solution of this problem is no longer feasible.

As before, the objective is to minimize the total production and inventory-holding costs
over the given planning horizon.

As a simple numerical example, suppose that: the duration of the planning horizon is
reduced to 3; the demands are d1 = 2, d2 = 4, and d3 = 1; the setup costs are s1 = 10,
s2 = 10, and s3 = 15; the “variable” production costs are c1 = 4, c2 = 6, and c3 = 6;
the inventory-holding costs are h1 = 1, h2 = 1, and h3 = 1; and finally, the production
capacity is constant, with mk = 10 for k = 1, 2, 3. We will use this example to illustrate
the calculation of total cost. Consider the production schedule (x1, x2, x3) = (5, 2, 0). The
total cost associated with this schedule can be computed as follows. For the first month,
the production cost is s1 + c1x1 = 10 + 4 × 5 = 30 and, since the ending inventory is
y1 = y0 + x1 − d1 = 0 + 5− 2 = 3, the inventory-holding cost is h1y1 = 1× 3 = 3. For the
second month, the production cost is s2 + c2x2 = 10 + 6 × 2 = 22 and, since the ending
inventory is y2 = y1 +x2−d2 = 3+2−4 = 1, the inventory-holding cost is h2y2 = 1×1 = 1.
For the third month, since x3 = 0, the production cost is 0 and, since the ending inventory
is y3 = y2 +x3−d3 = 1+0−1 = 0, the inventory-holding cost is also equal to 0. Therefore,
the total cost over this three-month period is given by: (30 + 3) + (22 + 1) + (0 + 0) = 56.

1



We now describe how to derive the optimal production schedule using dynamic program-
ming.

Stages and States

Since there is one decision for each month, we define one stage for each month.

Suppose that decisions for months 1 through k − 1 have already been made, and that we
are in charge of making the remaining decisions for months k through N , where N ≡ 12.
A little bit of reflection should convince you that the answer to the consultant question is
that we need to know the inventory level at the beginning of stage k. We will, therefore,
define the inventory level as the state.

Optimal-Value Function

In the language of the present problem, let

Vk(i) = the best possible total cost from the beginning of month k to the end of month
N , assuming that the initial inventory level for month k is i.

The goal is to determine V1(0), since we assume the initial inventory is zero.

Recurrence Relation

Suppose we are now in stage k; and suppose further that we are in state i, which means that
the current inventory level is i. We shall not belabor the precise range for i. One reason is
that it is tedious to do so; another reason is that we would like to place the emphasis on
the structure of the recurrence relation. For the same reasons, we also won’t belabor the
precise range of xk, for a given i, except noting the obvious bounds 0 ≤ xk ≤ mk.

That is, it is enough for now to have the intuitive understanding that both i and xk should
not be too “high”, so that there is a positive inventory at the end of month N , or too “low”,
so that demands during the remainder of the planning horizon cannot be met even if the
production levels are set at the maximum. The precise ranges will be discussed later when
we consider a specific computational example.

For any given combination of state i and action xk, the immediate one-stage cost in stage k

has two components. The first is the production cost, given by ck(xk); and the second is the
inventory-holding cost, given by hk(i + xk − dk). Since the subsequent state in stage k + 1
will be i+xk−dk, the best possible total cost from stage k+1 to the end is Vk+1(i+xk−dk).
It follows that if we take action xk, i.e., if we produce xk units of the product, then the best

2



possible total cost from stage k to the end is equal to ck(xk)+hk(i+xk−dk)+Vk+1(i+xk−dk).
Minimizing over xk now yields the following recurrence relation:

Vk(i) = min
xk

[ck(xk) + hk(i + xk − dk) + Vk+1(i + xk − dk)] .

Notice that we have left the feasible range for xk “open”, which means that it is to be
determined based on problem-specific information.

We next move on to the recursive computation of the Vk(i)’s.

Computation

We will illustrate the computation with the simple numerical example above.

To get things started quickly, we shall introduce a fictitious fourth stage (or month) and let
V4(0) = 0. That the final inventory should be zero is a consequence of the assumption that
left-over units have no value.

We begin with an analysis of the highest possible value for i in each stage. For stage 3, the
state should not be greater than 1; this is because the demand in stage 3 is 1 (i.e., d3 = 1)
and we should not have any excess units at the end of that stage. Next, observe that the
total demand is d1 + d2 + d3 = 7; therefore, the production level for stage 1 should not
exceed 7. Now, with x1 = 7, we have y1 = y0 + x1 − d1 = 0 + 7− 2 = 5. It follows that the
state in stage 2 should not exceed 5. Finally, the initial state in stage 1 is of course 0.

Since the production capacity in any stage, 10, is greater than the total demand 7, there is
no fear of not being able to produce enough units. It follows that the value of i can be zero
in every stage.

We now consider stage 3. For state 0, since d3 = 1, the only feasible action is to let x3 = 1;
therefore,

V3(0) = c3(1) + h3(0 + 1− 1) + V4(0 + 1− 1)

= 15 + 6× 1 + 1× 0 + 0
= 21,

where V4(0) = 0 is from the boundary condition. Similarly, the only feasible action for state
1 is to let x3 = 0; therefore,

V3(1) = c3(0) + h3(1 + 0− 1) + V4(1 + 0− 1)

= 0 + 1× 0 + 0
= 0.

3



These calculations are summarized in the stage-3 table below.

Stage 3: Actions
i x3 = 0 x3 = 1 V3(i) x∗3
0 − 21 + 0 21 1
1 0 + 0 − 0 0

Next, we consider stage 2, where the possible states are 0 through 5. For state 0, the value
of x2 can be either 4 or 5; this is because y2 = y1 + x2 − d2 = 0 + x2 − 4 and y2, being the
state in stage 3, must be either 0 or 1. Therefore,

V2(0) = min
4≤x2≤5

[c2(x2) + h2(0 + x2 − 4) + V3(0 + x2 − 4)]

= min [10 + 6× 4 + 1× 0 + 21, 10 + 6× 5 + 1× 1 + 0]

= min [34 + 0 + 21, 40 + 1 + 0]

= 41

and the optimal action is to let x2 = 5. The calculations for the other states are similar, so
we will be brief. For state 1, the value of x2 can be either 3 or 4; therefore,

V2(1) = min [10 + 6× 3 + 1× 0 + 21, 10 + 6× 4 + 1× 1 + 0]

= min [28 + 0 + 21, 34 + 1 + 0]

= 35

and the optimal action is to let x2 = 4. For state 2, the value of x2 can be either 2 or 3;
therefore,

V2(2) = min [10 + 6× 2 + 1× 0 + 21, 10 + 6× 3 + 1× 1 + 0]

= min [22 + 0 + 21, 28 + 1 + 0]

= 29

and the optimal action is to let x2 = 3. For state 3, the value of x2 can be either 1 or 2;
therefore,

V2(3) = min [10 + 6× 1 + 1× 0 + 21, 10 + 6× 2 + 1× 1 + 0]

= min [16 + 0 + 21, 22 + 1 + 0]

= 23

and the optimal action is to let x2 = 2. For state 4, the value of x2 can be either 0 or 1;
therefore,

V2(4) = min [0 + 1× 0 + 21, 10 + 6× 1 + 1× 1 + 0]

= min [0 + 0 + 21, 16 + 1 + 0]

= 17

4



and the optimal action is to let x2 = 1. Finally, for state 5, the only feasible action is to let
x2 = 0; therefore,

V2(5) = 0 + 1× 1 + 0

= 1.

These calculations are summarized in the stage-2 table below.

Stage 2: Actions
i x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 V2(i) x∗2
0 − − − − 34 + 21 41 + 0 41 5
1 − − − 28 + 21 35 + 0 − 35 4
2 − − 22 + 21 29 + 0 − − 29 3
3 − 16 + 21 23 + 0 − − − 23 2
4 0 + 21 17 + 0 − − − − 17 1
5 1 + 0 − − − − − 1 0

Finally, consider stage 1, where the only state is 0. Since d1 = 2, the feasible values for x1

range from 2 through 7; therefore, the optimal value for state 0 is

V1(0) = min
2≤x1≤7

[c1(x1) + h1(0 + x1 − 2) + V2(0 + x1 − 2)]

= min



10 + 4× 2 + 1× 0 + 41,
10 + 4× 3 + 1× 1 + 35,
10 + 4× 4 + 1× 2 + 29,
10 + 4× 5 + 1× 3 + 23,
10 + 4× 6 + 1× 4 + 17,
10 + 4× 7 + 1× 5 + 1


= min



18 + 41,
23 + 35,
28 + 29,
33 + 23,
38 + 17,
43 + 1


= 44

and the optimal action is to let x1 = 7. This yields the table below.

Stage 1: Actions
i x1 = 2 x1 = 3 x1 = 4 x1 = 5 x1 = 6 x1 = 7 V1(i) x∗1
0 18 + 41 23 + 35 28 + 29 33 + 23 38 + 17 43 + 1 44 7

Since V1(0) = 44, we conclude that the lowest possible total cost is 44. This is achieved by
the production schedule x1 = 7, x2 = 0, and x3 = 0, which are read from the above tables
in the usual manner. This completes the solution of the numerical example.

As usual, the recursive computation above can also be carried out via a network represen-
tation of the problem. You should work this out on your own as an exercise.

5


