Sampling Distributions and Simulation

OPRE 6301
Basic Concepts...

We are often interested in calculating some properties, i.e., parameters, of a population. For very large populations, the exact calculation of a parameter is typically prohibitive.

A more economical/sensible approach is to take a random sample from the population of interest, calculate a statistic related to the parameter of interest, and then make an inference about the parameter based on the value of the statistic. This is called statistical inference.

Any statistic is a random variable. The distribution of a statistic is a sampling distribution. The sampling distribution helps us understand how close is a statistic to its corresponding population parameter.

Typical parameters of interest include:

- Mean
- Proportion
- Variance
Sample Mean...

The standard statistic that is used to infer about the population mean is the **sample mean**.

Rolling a Die...

Suppose a fair die is rolled an infinite number of times. “Imagine” a population that is consisted of such sequences of outcomes.

Let X be the outcome of a single roll. Then, the probability mass function of X is:

<table>
<thead>
<tr>
<th>$X = x$</th>
<th>$P(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>3</td>
<td>1/6</td>
</tr>
<tr>
<td>4</td>
<td>1/6</td>
</tr>
<tr>
<td>5</td>
<td>1/6</td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
</tr>
</tbody>
</table>
Rolling the die once can be viewed as one “draw” from an infinite population with mean $\mu = E(X) = 3.5$ and variance $\sigma^2 = V(X) = 2.92$. Let us pretend that we do not know the population mean and would like to estimate that from a sample.

Each draw can be viewed as a sample of size 1. Suppose we simply used the outcome of a single roll, i.e., a realized value of X, as an estimate of μ. How good is this estimate?

Our estimate could assume any of the values 1, 2, . . . , 6 with probability $1/6$. If we used this approach repeatedly, then the average deviation of our estimates from μ would be $E(X - \mu) = 0$. This certainly is desirable, but note that the variance of the deviation $X - \mu$ is σ^2 and, in particular, that this “gap” between our estimate and μ is never less than 0.5!
Can we improve this situation? The key concept is that we need to increase the sample size.

Consider now a sample of size 2. Denote the outcomes of two independent rolls by \(X_1 \) and \(X_2 \). Let the average of the two outcomes be \(\bar{X} \) ("X bar"), i.e.,

\[
\bar{X} = \frac{X_1 + X_2}{2}.
\]

How good is \(\bar{X} \) as an estimate of \(\mu \)?

Terminology: A method for estimating a parameter of a population is called an estimator. Here, \(\bar{X} \) is an estimator for \(\mu \) and, for this reason, it is often denoted as \(\hat{\mu} \) ("\(\mu \) hat"). Note that \(\hat{\mu} \) is a function of the observations \(X_1 \) and \(X_2 \).
Let us look at the *sampling* distribution of \bar{X}. There are 36 possible pairs of (X_1, X_2): $(1, 1)$, $(1, 2)$, $(1, 3)$, \ldots, $(6, 4)$, $(6, 5)$, $(6, 6)$. The corresponding values of \bar{X} for these pairs are: 1, 1.5, 2, \ldots, 5, 5.5, 6. Using the fact that each pair has probability 1/36, we obtain (there are only 11 possible values for \bar{X}, since some values, 3.5 for example, occur in more than one way):

<table>
<thead>
<tr>
<th>$\bar{X} = x$</th>
<th>$P(x)$</th>
<th>Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1/36</td>
<td>(1,1)</td>
</tr>
<tr>
<td>1.5</td>
<td>2/36</td>
<td>(1,2), (2,1)</td>
</tr>
<tr>
<td>2.0</td>
<td>3/36</td>
<td>(1,3), (2,2), (3,1)</td>
</tr>
<tr>
<td>2.5</td>
<td>4/36</td>
<td>(1,4), (2,3), (3,2), (4,1)</td>
</tr>
<tr>
<td>3.0</td>
<td>5/36</td>
<td>(1,5), (2,4), (3,3), (4,2), (5,1)</td>
</tr>
<tr>
<td>3.5</td>
<td>6/36</td>
<td>(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)</td>
</tr>
<tr>
<td>4.0</td>
<td>5/36</td>
<td>(2,6), (3,5), (4,4), (5,3), (6,2)</td>
</tr>
<tr>
<td>4.5</td>
<td>4/36</td>
<td>(3,6), (4,5), (5,4), (6,3)</td>
</tr>
<tr>
<td>5.0</td>
<td>3/36</td>
<td>(4,6), (5,5), (6,4)</td>
</tr>
<tr>
<td>5.5</td>
<td>2/36</td>
<td>(5,6), (6,5)</td>
</tr>
<tr>
<td>6.0</td>
<td>1/36</td>
<td>(6,6)</td>
</tr>
</tbody>
</table>

As you can see, the sampling distribution of \bar{X} is more complicated. (Imagine doing this for $n = 3, 4, \ldots$)
The sampling distribution of \bar{X} is charted below:

Notice that this distribution is symmetric around 3.5 and that it has *less* variability than that of X, which is also charted below:
Formally, we have

\[E(\bar{X}) = E\left(\frac{X_1 + X_2}{2} \right) \]
\[= \frac{1}{2}(E(X_1) + E(X_2)) \]
\[= \mu \]

and

\[V(\bar{X}) = V\left(\frac{X_1 + X_2}{2} \right) \]
\[= \frac{1}{4}(V(X_1) + V(X_2)) \]
\[= \frac{\sigma^2}{2}. \]

Thus, the variance of our estimator has been reduced in half, while the mean remained “centered.”
Standard Estimator for Mean...

More generally, consider a sample of size n with outcomes X_1, X_2, \ldots, X_n from a population, where the X_is have a common arbitrary distribution, and are independent. (In our previous example, X happens to be discrete uniform over the values 1, 2, \ldots, 6.)

Define again

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$ \hfill (1)

Then,

$$\mu_{\bar{X}} \equiv E(\bar{X}) = \mu$$ \hfill (2)

and

$$\sigma_{\bar{X}}^2 \equiv V(\bar{X}) = \frac{1}{n} \sigma^2.$$ \hfill (3)

The standard (best, in a certain sense) estimator for the population mean μ is $\mu_{\bar{X}}$. The standard deviation of \bar{X}, $\sigma_{\bar{X}}$, is called the standard error of the estimator.
Observe that

— The sample mean $\mu_{\bar{X}}$ does not depend on the sample size n.

— The variance $V(\bar{X})$ does depend on n, and it shrinks to zero as $n \to \infty$. (Recall the effect of increasing n in our example on discrimination.)

Moreover, it is most important to realize that the calculations in (2) and (3) do not depend on the assumed distribution of X, i.e., of the population.

Can we say the same about the sampling distribution of \bar{X}? We may be asking too much, but it turns out . . .
Central Limit Theorem…

An interesting property of the normal distribution is that if \(X_1, X_2, \ldots \) are normally distributed, i.e., if the population from which successive samples are taken, has a normal distribution, then \(\bar{X} \) is normally distributed (with parameters given in (2) and (3) above) for all \(n \).

What if the population (i.e., \(X \)) is not normally distributed?

Central Limit Theorem: For any infinite population with mean \(\mu \) and variance \(\sigma^2 \), the sampling distribution of \(\bar{X} \) is well approximated by the normal distribution with mean \(\mu \) and variance \(\sigma^2/n \), provided that \(n \) is sufficiently large.

This is the most fundamental result in statistics, because it applies to any infinite population. To facilitate understanding, we will look at several simulation examples in a separate Excel file (C9-01-Central_Limit_Theorem.xls).
The definition of “sufficiently large” depends on the extent of nonnormality of X (e.g., heavily skewed, multimodal, ...). In general, the larger the sample size, the more closely the sampling distribution of \bar{X} will resemble a normal distribution. For most applications, a sample size of 30 is considered large enough for using the normal approximation.

For finite population, the standard error of \bar{X} should be corrected to

$$
\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N - n}{N - 1}},
$$

where N is the size of the population. The term

$$
\sqrt{\frac{N - n}{N - 1}}
$$

is called the finite population correction factor. For large N, this factor, of course, approaches 1 and hence can be ignored. The usual rule of thumb is to consider N large enough if it is at least 20 times larger than n.

11
Example 1: Soda in a Bottle

Suppose the amount of soda in each “32-ounce” bottle is normally distributed with a mean of 32.2 ounces and a standard deviation of 0.3 ounce.

If a customer buys one bottle, what is the probability that the bottle will contain more than 32 ounces of soda? Answer:

This can be viewed as a question on the distribution of the population itself, i.e., of \(X \) (or of a sample of size one). We wish to find \(P(X > 32) \), where \(X \) is normally distributed with \(\mu = 32.2 \) and \(\sigma = 0.3 \):

\[
P(X > 32) = P \left(\frac{X - \mu}{\sigma} > \frac{32 - 32.2}{0.3} \right)
= P(Z > -0.67)
= 1 - P(Z \leq -0.67)
= 0.7468 ,
\]

where the last equality comes from the Excel function \text{NORMSDIST}().

Hence, there is about 75% chance for a single bottle to contain more than 32 ounces of soda.
Suppose now that a customer buys a box of four bottles, what is the probability for the mean amount of soda in these four bottles to be greater than 32 ounces? Answer:

We are now interested in \bar{X} for a sample of size 4. Since X is normally distributed, \bar{X} also is. We also have $\mu_{\bar{X}} = \mu = 32.2$ and $\sigma_{\bar{X}} = \sigma/\sqrt{n} = 0.3/\sqrt{4} = 0.15$. It follows that

$$P(\bar{X} > 32) = P\left(\frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} > \frac{32 - 32.2}{0.15}\right)$$

$$= P(Z > -1.33)$$

$$= 1 - P(Z \leq -1.33)$$

$$= 0.9082.$$

Thus, there is about 91% chance for the mean amount of soda in four bottles to exceed 32 ounces.

The answer here, 91%, is greater than that in a sample of size one. Is this expected? Note that the standard deviation of the sample mean ($\sigma_{\bar{X}}$) is smaller than the standard deviation of the population (σ), as highlighted in yellow above. Pictorially, ...
Reducing Variability:

Sample of Size One:

Sample of Size Four:
Example 2: Average Salary

The Dean of a Business school claims that the average salary of the school’s graduates one year after graduation is $800 per week with a standard deviation of $100.

A second-year student would like to check whether the claim about the mean is correct. He carries out a survey of 25 people who graduated one year ago. He discovers the sample mean to be $750. Based on this information, what can we say about the Dean’s claim?

Analysis: To answer this question, we will calculate the probability for a sample of 25 graduates to have a mean of $750 or less when the population mean is $800 and the population standard deviation is $100, i.e., the \(p \)-value for the given sample mean.

Although \(X \) is likely to be skewed, it seems reasonable to assume that \(\bar{X} \) is normally distributed. The mean of \(\bar{X} \) is \(\mu_{\bar{X}} = 800 \) and the standard deviation of \(\bar{X} \) is

\[
\sigma_{\bar{X}} = \sigma / \sqrt{n} = 100 / \sqrt{25} = 20.
\]
Therefore,

\[P(\bar{X} \leq 750) = P\left(\frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} \leq \frac{750 - 800}{20}\right) \]

\[= P(Z \leq -2.5) \]

\[= 0.0062. \]

Since this \(p \)-value is extremely small (compared to 0.05 or 0.01), we conclude that the Dean’s claim is not supported by data.
A common practice is to convert calculations regarding \bar{X} into one regarding the standardized variable Z:

$$Z = \frac{\bar{X} - \mu}{\sigma}/\sqrt{n}.$$

Indeed, we had done this in the previous two examples; and this unifies discussion and notation.

From the central limit theorem, Z as defined in (4) is, for large n, normally distributed with mean 0 and variance 1. That is, the distribution of Z can be well approximated by the standard normal distribution.

Define $z_{\alpha/2}$ as the value such that

$$P(-z_{\alpha/2} < Z \leq z_{\alpha/2}) = 1 - \alpha.$$

The choice of α, the so-called significance level, is usually taken as 0.05 or 0.01.
The value $z_{\alpha/2}$ is called the *two*-tailed critical value at level α, in contrast with the *one*-tailed z_A, or z_α in our current notation, discussed earlier.

Using NORMSINV() (see C7-07-Normal.xls; “Heights” example, last question), it is easily found that

— For $\alpha = 0.1$, $z_{\alpha/2} = 1.645$.
— For $\alpha = 0.05$, $z_{\alpha/2} = 1.96$.
— For $\alpha = 0.01$, $z_{\alpha/2} = 2.576$.

For $\alpha = 0.05$, the most-common choice, this means:

\[
\begin{array}{c}
-1.96 \\
0 \\
1.96
\end{array}
\]
Upon substitution of (4), (5) becomes
\[P \left(-z_{\alpha/2} < \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \leq z_{\alpha/2} \right) = 1 - \alpha , \]
which is equivalent to:
\[P \left(\mu - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \bar{X} \leq \mu + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right) = 1 - \alpha . \tag{6} \]
This means that for a given \(\alpha \), the probability for the sample mean \(\bar{X} \) to fall in the interval
\[\left(\mu - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \mu + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right) \tag{7} \]
is \(100(1 - \alpha) \)%.

We will often use this form for statistical inference, since it is easy to check if a given \(\bar{X} \) is contained in the above interval. The end points
\[\mu \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \]
are often called control limits; they can be computed without even taking any sample.
Example 2: Average Salary — Continued

We can also check the Dean’s claim using a slightly different approach.

Let \(\alpha = 0.05 \) (say) and define an observed \(\bar{X} \) as rare if it falls outside the interval (7).

Analysis: With \(\mu = 800, \sigma = 100, n = 25 \), our control limits are

\[
800 \pm 1.96 \frac{100}{\sqrt{25}};
\]

or, from 760.8 to 839.2. Since the observed \(\bar{X} = 750 \) is outside these limits, the Dean’s claim is not justified.

Note that if we had observed an \(\bar{X} \) of 850 (50 above the mean, as opposed to below), we would also have rejected the Dean’s claim. This suggests that we could also define a “two-sided” \(p \)-value as:

\[
P(\bar{X} \leq 750 \text{ or } \bar{X} \geq 850).
\]

This is just twice the original (one-sided) \(p \)-value, and hence equals \(2 \cdot 0.0062 = 0.0124 \). Since this is less than the given \(\alpha = 0.05 \), we arrive, as expected, the same conclusion.
Sampling Distribution of a Proportion.

The central limit theorem also applies to “sample proportions.” Let X be a binomial random variable with parameters n and p. Since each trial results in either a “success” or a “failure,” we can define for trial i a variable X_i that equals 1 if we have a success and 0 otherwise. Then, the proportion of trials that resulted in a success is given by:

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{X}{n}. \quad (8)$$

In the “Discrimination” example (see C7-05-Binomial.xls), n is the number of available positions and p is the probability for hiring a female for a position. Let X_i “indicate” whether or not the ith hire is a female. Then, \hat{p} as defined in (8) is the (random) proportion of hires that are female.
Observe that the middle term in (8) is an average, or a sample mean. Therefore, the central limit theorem implies that the sampling distribution of \(\hat{p} \) is approximately normal with mean

\[
E(\hat{p}) = p \tag{9}
\]

(note that \(E(X_i) = p \)) and variance

\[
V(\hat{p}) = \frac{p(1 - p)}{n} \tag{10}
\]

(note that \(V(X_i) = p(1 - p) \)).

This discussion, in fact, explains why, under suitable conditions, the normal distribution can serve as a good approximation to the binomial; see C7-07-Normal.xls.

From (9) and (10), we see that \(\hat{p} \) can be standardized to a \(Z \) variable:

\[
Z = \frac{\hat{p} - p}{\sqrt{p(1 - p)/n}}.
\]
Example: Discrimination — Continued

For \(n = 50, \ p = 0.3 \) and \(\hat{p} = 0.1 \) (10\% of 50), we have

\[
Z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} = \frac{0.1 - 0.3}{\sqrt{0.3(1 - 0.3)/50}} = -3.086.
\]

For \(\alpha = 0.01 \), we have \(z_\alpha = 2.326 \) (NORMSINV(0.99); note that this is a one-tailed critical value). Since \(-3.086\) is less than \(-2.326\) (the normal density is symmetric), we conclude that it is likely that discrimination exists. Note that our calculations here are based on a normal approximation to the exact binomial probability in C7-05-Binomial.xls. Since the approximation is good, the conclusions are consistent.
Sampling Distribution of a Difference. . .

We are frequently interested in comparing two populations.

One possible scenario is that we have two independent samples from each of two normal populations. In such a case, the sampling distribution of the difference between the two sample means, denoted by $\bar{X}_1 - \bar{X}_2$, will be normally distributed with mean

$$\mu_{\bar{X}_1 - \bar{X}_2} = E(\bar{X}_1 - \bar{X}_2) = \mu_1 - \mu_2$$ (11)

and variance

$$\sigma^2_{\bar{X}_1 - \bar{X}_2} = V(\bar{X}_1 - \bar{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}.$$ (12)

If the two populations are not both normally distributed, then the above still applies, provided that the sample sizes n_1 and n_2 are “large” (e.g., greater than 30).
As usual, we can standardize the difference between the two means:

\[
Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}. \tag{13}
\]

Example: MBA Salaries

The starting salaries of MBA graduates from two universities are $62,000 and $60,000, with respective standard deviations $14,500 and $18,300. Assume that the two populations of salaries are normally distributed.

Suppose \(n_1 = 50 \) and \(n_2 = 60 \) samples are taken from these two universities. What is the probability for the first sample mean \(\bar{X}_1 \) to exceed the second sample mean \(\bar{X}_2 \)?
Analysis: We wish to find $P(\bar{X}_1 - \bar{X}_2 > 0)$, which can be computed via Z as:

$$P \left(Z > \frac{0 - (62000 - 60000)}{\sqrt{14500^2/50 + 18300^2/60}} \right)$$

$$= P(Z > -0.64)$$

$$= 1 - P(Z \leq -0.64)$$

$$= 1 - 0.261$$

$$= 0.739.$$

Thus, there is about a 74% chance for the sample mean starting salary of the first university to exceed that of the second university.