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of the section. Nevertheless, the flop count gives us a useful first indicatic
gorithm’s operation time, and we shall count flops as a matter of course.

1.1.8 ‘Begin to familiarize yourself with MATLAB. Log on to a machine -

- MATLARB installed, and start MATLAB. From MATLAB'’s command line ty,

randn (3,4) to generate a 3 X 4 matrix with random entries. To learn mo1

_ the randn command, type help randn. Nowtype x = randn (4,1
~ avector (a4 X 1 matrix) of random numbers. To multiply A by z and store th

_in a new vector b, type b = Axx,

To get MATLARB to save a transcript of your session, type diary on. T
cause a file named diary, containing a record of your MATLAB session, to be
Later on you can edit this file, print it out, turn it in to your instructor, or wi
To learn more about the diary command, type help di ary.

Other useful commands are help and help he 1p. In addition to getti;
from the command line, you can open MATLAB’s help browser and search or
for a large number of topics. Explore MATLAB to find out what other fea
has. There are demonstrations and help for beginners that you might find
MATLAB also has a built in editor and a debugger.

% Ixercise 1.1.9 Consider the following simple MATLAB program.

n = 500;
for jay = 1:4
if jay > 1
oldtime = time;
end
A = randn(n);
X = randn(n,1);
t = cputime;
for rep = 1:100 % compute the product 100 times
b = A*x;
end
matrixsize = n
time = cputime - t
if jay > 1
ratio = time/oldtime
end
n = 2*n;
end

The syntax is simple enough that you can readily figure out what the program
The commands randn and b = A*x are familiar from the previous exercis
perform each matrix-vector multiplication 100 times in order to build up a signi
amount of computing time. The function cputime tells how much corm
(central processing unit) time the current MATLAB session has used. This prc
times the execution of 100 matrix-vector multiplications for square matrices
dimension 500, 1000, 2000, and 4000.
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Enter this program into a file called matvectime.m. Actually, you can call it
whatever you please, but you must use the .m extension. (MATLAB programs are
called m-files.) Now start MATLAB and type matvectime (without the .m) to
execute the program. Depending on how fast your computer is, you may like to
change the size of the matrix or the number of times the jay loop or the rep loop
is executed.

MATLAB normally prints the output of all of its operations to the screen. You
can suppress printing by terminating the operation with a semicolon. Looking at

the program, we see that A, x, €, and b will not be printed, but matrixsize, .
time,and ratio will

Look at the values of ratio. Are they close to what you would expect based on f

O <

the flop count?

Exercise 1.1.10 Write a MATLAB program that performs matrix-vector multiplication two

different ways: (a) using the built-in MATLAB command b = A*x, and (b) using
loops, as follows.

b = zeros(n,1l);
for j =:1:n
for 1 = 1l:n
b(i) = b(i) + A(i, ) *x(I);
end
end

S o O =

Time the two different methods on matrices of various sizes. Which method is faster?

(You may want to use some of the code from Exercise 1.1.9.) O
. . ) . ,&lxercise]
Exercise 1.1.11  Write a Fortran or C program that performs matrix-vector multiplication ' n
using loops. How does its speed compare with that of MATLAB? a 7 n
{ t
- - - - y
Multiplying a Matrix by a Matrix
If Ais an n X m matrix, and X is m X p, we can form the product B = AX, which | E
isn x p. The (3, 7) entry of B is : T
f t
m a
bij = z QikTkj- (1.1.12)
k=1 i
In words, the (i, ) entry of B is the dot product of the ith row of A with the jth 8§
column of X. If p = 1, this operation reduces to matrix-vector multiplication. If
p > 1, the matrix-matrix multiply amounts to p matrix-vector multiplies: the jth " = T

column of B is just A times the jth column of X.
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 computer program to multiply A by X might look something like this:

B+0
fori=1,...,n
forj=1,...,p (1.1.13)
fork=1,...,m
[ bij — bij + 0T

The decision to put the i-loop outside the j -loop was perfectly arbitrary. In fact, the
order in which the updates b;; « bij + aikTr; are made is irrelevant, so the three
Joops can be nested in any way. Thus there are six basic varjants of the matrix-matrix
~ multiplication algorithm. These are all equivalent in principle. In practice, some
versions may run faster than others on a given computer because of the order in
which the data are accessed.

It is a simple matter to count the flops in matrix-matrix multiplication. Since there
are two flops in the innermost loop of (1.1.13), the total flop count is

m
Z 2 = 2nmp.
1k=1

>

n p
i=1 j=

In the important case when all of the matrices are square of dimension n x n, the flop
countis 2n®. Thus square matrix multiplication is an O(n®) operation. This function
grows rather quickly with n: each time n is doubled, the flop count is multiplied
by eight. (However, this is not the whole story. See the remarks on fast matrix
multiplication at the end of this section.)

E!

.
;;xercise 1.1.14 Modify the MATLAB code from Exercise 1.1.9 by changing the matrix-vector
. multiply b = A*x to a matrix-matrix multiply B = A*X, where X isn X n. You
may also want to decrease the initial matrix dimension n and the number of times
the rep loop is executed. Run the code and check the ratios. Are they close to what
you would expect them to be, based on the flop count? |

Block Matrices and Block Matrix Operations

The idea of partitioning matrices into blocks is simple but powerful. It is a useful
tool for proving theorems, constructing algorithms, and developing faster variants of
algorithms. We will use block matrices again and again throughout the book.

Consider the matrix product AX = B, where the matrices have dimensions n X m,
m x p, and n X p, respectively. Suppose we partition A into blocks:

my Mo
oom A A ny+ng=n ;
A= N9 [ A21 A22 ] { mi —+ Mo = m. (1'1'15)

The labels ny, na, m1, and mo indicate that the block A;; has dimensions n; X m;.
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We can partition X similarly.

p1 D2
my X1 X2 mi+mg =m
X = 1.1.16
mo [ Xo1 Xa2 } { p1+p2=Dp ( )

The numbers m; and mg are the same as in (1.1.15). Thus, for example, the number
of rows in X5 is the same as the number of columns in A11 and Ao;. Continuing in

the same spirit, we partition B as follows:

p1 P2
n1 Bn B12 ni +ne =N
: B= 1.1.17
n2 [ By Bao } { p1+p2 =D ( )

The row partition of B is the same as that of A, and the column partition is the same
| as that of X . The product AX = B can now be written as

A1 A X1 X2 :{Bll 312} (1.1.18)
Az Az Xo1 Xo2 Bay Baa |’ -

We know that B is related to A and X by the equations (1. 1.12), but how are the blocks
of B related to the blocks of A and X? We would hope to be able to multiply the
blocks as if they were numbers. For example, we hope that A1 X11+A12X01 = B 7
Theorem 1.1.19 states that this is indeed the case. ’

Theorem 1.1.19 Let A, X, and B be partitioned as in (1.1.15), (1.1.16), and (1.1.17),
respectively. Then AX = B if and only if

A X1 + AwXoj = Bij, i,j=1,2.

You can easily convince yourself that Theorem 1.1.19 is true. It follows more
or less immediately from the definition of matrix multiplication. We will skip the
tedious but routine exercise of writing out a detailed proof. You might find the
following exercise useful.

Exercis

Exercise 1.1.20 Consider matrices 4, X, and B, partitioned as indicated.

B:

Thus, for example, A1z = [ i ? and Ao = [ -1 ] Show that AX = B and
O

AnX1j + AipXoj = Byj fori, j =1,2.



Exercise 1.2.5 Prove that if A1 exists, then det(A) # 0.
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Exercise 1.2.4 Prove that if A~! exists, then there can be no nonzero y for which Ay = 0. O

a

We now move on to some examples.

Electrical Circuits

Example 1.2.6 Consider the electrical circuit shown in Figure 1.1. Suppose the
circuit is in an equilibrium state; all of the voltages and currents are constant. The
four unknown nodal voltages 1, . . ., T4 can be determined as follows. At each of
the four nodes, the sum of the currents away from the node must be zero (Kirchhoff’s
current law). This gives us an equation for each node. In each of these equations
the currents can be expressed in terms of voltages using Ohm’s law, which states that
the voltage drop (in volts) is equal to the current (in amperes) times the resistance
(in ohms). For example, suppose the current from node 3 to node 4 through the 5 £
resistor is I. Then by Ohm’s law, 3 — T4 = 5I,s0 I = .2(z3 — x4). Treating the
other two currents flowing from node 3 in the same way, and applying Kirchhoff’s
current law, we get the equation

2(3?3 — .’E4) + 1(%3 — .’121) + 5(183 - 6) =0
or
—z1 +1.723 — 2x4 = 3.

Applying the same procedure to nodes 1, 2, and 4, we obtain a system of four linear

equations in four unknowns:

2:U1 - o - I3 = 0

- T1 + 1.5552 - .51134 = 0
- I + 1.7z3 — 224 = 3 ’

— 5zyg — 213 + 1724 = 0

1Q

Figure 1.1  Solve for the nodal voltages.
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an be written as a single matrix equation

2 -1 -1 0 1
-1 15 0 -5 T2
-1 0 17 -2 T3

0 -5 =2 17 T4

O wWw oo

gh we will not prove it here, the coefficient matrix is nonsingular, so the sy

e the has exactly one solution. Solving it using MATLAB, we find that

The
ch of 3.0638
off’s | 2.4255
tions = 37021
s that 1.1489
ance
250 Thus, for example, the voltage at node 3 is 3.7021 volts. These are not the
g the answers; they are rounded off to four decimal places. Given the nodal volt
off’s we can easily calculate the current through any of the resistors by Ohm’s law.
example, the current flowing from node 3 to node 4 is .2(z3 —z4) = 0.5106 amp
Exercise 1.2.7 Verify the correctness of the equations in Example 1.2.6. Use MATLAI
some other means) to compute the solution. If you are unfamiliar with MATLAB
can find out how to enter matrices by searching for the topic “entering matrice
near

MATLAB’s help browser or by exploring MATLAB’s “demos” or “getting star
Once you have entered the matrix A and the vector b, you can type x = A\
solve for z. A transcript of your whole session (which you can later edit, print
and turn in to your instructor) can be made by using the command diary on.
more information about the diary command type help diary atthe comr
line or search for “diary” in the help browser.

1Q
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Figure 1.2 Solve for the loop currents.
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Figure 1.7 Calculate the loop currents.
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Figure 1.8 System of n masses

ixercise 1.2,
ith
tos
Z1,

(e

(t

;Exercise 1.2

(t
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1 era system of . carts connected by springs, as shown in Figure 1.8. The
has a stiffness of k; newtons/meter. Suppose that the carts are subjected
orces of fi, f2,. .., fn Newtons, respectively, causing displacements of
' ., meters, respectively.

rite down a system of n linear equations Az = b that could be solved for
,-..,T,. Notice that if n is at all large, the vast majority of the entries of A
1 be zeros. Matrices with this property are called sparse. Since all of the
onzeros are confined to a narrow band around the main diagonal, A is also
-alled banded. In particular, the nonzeros are confined to three diagonals, so
A s fridiagonal.

 Compute the solution in the case n = 20, k; = 1 newton/meter for all 1,
and f; = 0 except for fs = 1 newton and f;¢ = —1 newton. (Type help
toeplitz tolearn an easy way to enter the coefficient matrix in MATLAB.)

O

-2.21 Recall the definition of the derivative from elementary calculus:

W (z) = lim w

' (é) Show that if h is a sufficiently small pbsitive number, then both

u(z + h) — u(z) and u(z) —u(z — h)
h h

are good approximations of u'(z).

(b) Take the average of the two estimates from part (a) to obtain the estimate

/ Nu(z"_h)_u(x_h)
u'(z) ~ o7 .

Draw a picture (the graph of u and a few straight lines) that shows that this
estimate is likely to be a better estimate of u’(x) than either of the estimates
from part (a) are.

(c) Apply the estimate from part (b) to " (z) with h replaced by k/2 to obtain

" ~ u’(:c+h/2) _ul(x-h/2)
u'(z) ~ - .

Now approximate u'(z + h/2) and u/(z — h/2) using the estimate from part
(b), again with h replaced by h/2, to obtain

uw(z + h) — 2u(z) + u(z — h)
h? '

ul/(x) ~



