Some Basic Classes of Subsets of a Space \mathcal{X}

- **Semiring.** A nonempty class \mathcal{C} of subsets of \mathcal{X} satisfying

 (a) $A, B \in \mathcal{C}$ implies $A \cap B \in \mathcal{C}$.

 (b) For $A, B \in \mathcal{C}$ with $A \subseteq B$, there is a finite partition of $B - A$ in \mathcal{C}: there exist disjoint C_1, \ldots, C_n in \mathcal{C} such that $B - A = \bigcup_{i=1}^n C_i$.

EXAMPLS:

(i) The class $\emptyset \cup \{ \{x\}, x \in \mathcal{X}\}$.

(ii) The class of finite, left-closed, and right-open intervals in \mathbb{R}.

- **Ring.** A nonempty class \mathcal{C} of subsets of \mathcal{X} satisfying

 (a) $A, B \in \mathcal{C}$ implies $A - B \in \mathcal{C}$.

 (b) $A, B \in \mathcal{C}$ implies $A \cup B \in \mathcal{C}$.

FACTS:

(i) The empty set \emptyset must belong to \mathcal{C}.

(ii) A semiring closed under the formation of unions is a ring.

- **σ-ring.** A ring closed under the formation of countable unions.

- **Monotone class.** A nonempty class \mathcal{C} of sets containing the limits of monotone sequences in \mathcal{C}; for an increasing or decreasing sequence of sets $C_i \in \mathcal{C}$, we have $\lim_n C_n \in \mathcal{C}$.

FACTS:

(i) Every σ-ring is a monotone class.

(ii) Every monotone ring is a σ-ring.

(iii) A nonmonotone sequence can have a limit. Take $C_{2n} \subset C_{2n+2} \subset \cdots \uparrow C$ and Take $C_{2n+1} \supset C_{2n+3} \supset \cdots \downarrow C$.

- **π-class.** A nonempty class \mathcal{C} of subsets of \mathcal{X} closed under the formation of intersections.

- **λ-class (also called d-system).** A nonempty class \mathcal{C} of subsets of \mathcal{X} containing \mathcal{X} and satisfying

 (a) $A, B \in \mathcal{C}$ with $A \subseteq B$ implies that the difference $B \setminus A \in \mathcal{C}$.

 (b) For an increasing sequence of sets $C_i \in \mathcal{C}$, we have $\lim_n C_n \in \mathcal{C}$.

FACTS:

(i) A λ-class is closed under the formation of complements and of finite and countable disjoint unions.

(ii) Similar events. Let $\{P_\theta, \theta \in \Theta\}$ be a family of probability distributions. An event A is “similar” if $P_\theta(A)$ is independent of $\theta \in \Theta$. The class of similar events forms a λ-class.

- **Semialgebra, or semifield.** A semiring containing \mathcal{X}.

• **Algebra, or field.** A nonempty class C of subsets of X closed under the formation of complements and unions:

 (a) For $A \in C$, the complement A^c is in C.
 (b) $A, B \in C$ implies $A \cup B \in C$.

FACTS:

(i) An algebra is a ring containing X.

(ii) Every monotone class is an algebra.

• **σ-algebra, or σ-field.** A nonempty class C of subsets of X closed under the formation of complements and countable unions.

FACTS:

(i) A σ-algebra is a σ-ring containing X.

(ii) A σ-algebra is a special case of λ-class: namely, a λ-class closed under formation of pairwise intersections. Equivalently, removing the “disjoint” restriction in the definition of λ-class yields that of a σ-algebra.

 * Permutation tests (including rank tests) have critical regions belong to the λ-class of similar events. Critical regions of rank tests, however, constitute a σ-algebra.

 * Probability functions are well-defined on λ-classes. Conditional probability functions and expectations, however, are defined only relative to specified σ-algebras.

 * Example when it is straightforward to define probability on a λ-class but not on its extension to a σ-algebra. Let event E occur with probability $1/2$, and let event F occur independently of E. Let A occur if E occurs, and let B occur if $(E \cap F) \cup (E^c \cap F^c)$ occurs. Then $P(A) = P(B) = 1/2$. But $P(A \cap B)$ is indeterminate from the given experiment.

(iii) A class that is both a π-class and a λ-class is a σ-algebra.

(iv) A σ-algebra is closed under countable intersections.

(v) An algebra is a σ-algebra if and only if it is a monotone class.

• **Generated σ-algebras.** For a class \mathcal{E} of subsets of X, there exists a smallest (or minimal) σ-algebra containing \mathcal{E}, denoted $\sigma(\mathcal{E})$. It is also called the σ-algebra generated by \mathcal{E}.

• **The Borel sets of \mathbb{R}.** Start with the semiring

$$\mathcal{E}_0 = \{[a, b) : -\infty < a < b < \infty\},$$

the class of finite, left-closed, and right-open intervals in the real line. The algebra \mathcal{E} generated by \mathcal{E}_0 consists of all finite unions of disjoint sets of the form $[a, b), (-\infty, a)$, or $[b, \infty)$. The σ-algebra $\sigma(\mathcal{E}_0) = \sigma(\mathcal{E})$ generated by \mathcal{E} (or \mathcal{E}_0) is called the Borel sets in \mathbb{R}.

The semiring of left-open, right-closed intervals also generates the Borel sets. In fact, quite simply, the smallest σ-algebra containing the class of infinite intervals $\{(-\infty, a) : -\infty < a < \infty\}$ is the class of Borel sets.

Note that, using the above-noted fact that an algebra is a σ-algebra if and only if it is a monotone class, one can pass from the algebra \mathcal{E} to $\sigma(\mathcal{E})$ by means of limiting processes.

To determine a probability on the Borel sets $\sigma(\mathcal{E}_0)$, it suffices to specify its values simply on the intervals $[a, b)$.

This is because any such specification has a unique extension to a
probability measure on all the Borel sets. In the case of continuous probability distributions, however, extensions beyond this class of sets need not be unique. Thus the Borel sets represent a convenient level of generality for probability modeling.

• **The Borel sets of** \mathbb{R}^k. Similarly defined, replacing intervals by rectangles

$$[\mathbf{x} = (x_1, \ldots, x_k) : a_i \leq x_i < b_i, i = 1, \ldots, k]$$

(sometimes called hyperrectangles) in the definition of $\sigma(\mathcal{E}_0)$. Indeed, the (countable) class of rectangles with a_i and b_i all rational generates the Borel sets of \mathbb{R}^k.

– RJS, 1/28/2012