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Abstract

It has been more than ninety years since the classical square-root EOQ formula
was given by Harris (1913). Yet there is no continuous-review stochastic inventory
model published in the literature with a general enough demand, whose optimal
policy would reduce to the square-root formula in the absence of the stochastic
components of the underlying demand. Why? In this paper, we surmise the rea-
sons, develop a model with continuous and Poisson demands for the first time,
and prove the optimality of an (s, S)-policy. We also verify that the policy re-
duces to the EOQ formula, as it must, when the intensity of the Poisson process
goes to zero. In the process, we develop a new, unified approach of dealing with
both the average cost and the discounted cost criteria. We introduce new average
discounted-cost formulas along with intuitive interpretations. We do not require
the surplus cost function to be convex or quasi-convex as has been assumed in the
literature. We show that while the optimal ordering level is unique, there may be
more than one optimal order-up-to levels.



1 Introduction

In this paper, we bring together two of the most classical results in operations research,

namely, the EOQ formula and the optimality of an (s, S)-policy in stochastic inventory

models with a fixed ordering cost. The EOQ formula dates back to Ford W. Harris

(1913) and the optimality of (s, S)-policy was proved by Herbert Scarf (1960). We

should mention, however, that Scarf was not the first to formulate the problem he had

solved. That honor belongs to K. J. Arrow, T. Harris and J. Marschak (1951), who

formulated the problem and proposed the famous (s, S)-policy. It is also fair to say that

Harris (1913) did not provide a rigorous proof that the lot size given by the formula

minimized the long-run average cost. Moreover, since an easily accessible reference

containing a rigorous proof of the optimality of the EOQ formula could not be found,

Beyer and Sethi (1998) supplied a proof involving quasi-variational inequalities (QVI)

that arise in the course of dealing with continuous-time optimization problems involving

fixed costs.

The marriage of the two classical results is accomplished by formulating a continuous-

time stochastic inventory model involving a demand that is the sum of a constant de-

mand rate and a compound Poisson process. In the presence of a fixed cost, we prove

that an (s, S)-policy minimizes the long-run average cost. This (s, S)-policy reduces to

the square-root EOQ formula, when the intensity of the compound Poisson process be-

comes zero. And when the constant demand component vanishes, our model reduces to

what is referred to in the literature as the continuous-review stochastic inventory model

with compound Poisson demand. We should mention that our method of analysis also

provides the optimal policy for the discounted cost criterion.

Before we describe the solution methodology we develop and various contributions we

make in this paper, we shall briefly review the literature on continuous-review stochastic

inventory models involving a fixed cost. In this we limit ourselves to discounted and

average cost models allowing for backorders. Even though many of the papers we re-
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view consider leadtimes in ordering, we shall not emphasize this issue for expositional

purposes. Besides, in most cases, a fixed leadtime can be incorporated without much

complications in the standard model by using the inventory position rather than the

inventory on hand as the system state.

Most of the related early work is devoted to obtaining stationary and limiting distri-

butions of the inventory level under a variety of policies. Also developed are expressions

of the expected performance measures associated with the various policies. These tasks

were accomplished under a variety of different stochastic demand scenarios. For exam-

ple, demands may occur continuously in time or they arrive one at a time at random

epochs. These epochs may follow a Poisson process, a renewal process, or a counting

process. When the demand size at any of these epochs is an iid random variable, then

we shall qualify the arrival process by using the word compound like in a compound

Poisson process. We shall classify these early papers according to the demand process

they consider.

Poisson demands are considered by Scarf (1958), Karlin and Scarf (1958), Galliher et

al. (1959), and Morse (1958). These early papers are reviewed in Scarf (1963). Poisson

demand is generalized by Finch (1961), Rubalskiy (1972a,b) and Sivazlian (1974) to unit

demands arriving at epochs following a renewal process.

Compound Poisson demands are treated in Richards (1975), Thompstone and Sil-

ver (1975), Archibald and Silver (1978), Feldman (1978) and Federgruen et al. (1983).

Feldman allows the intensity of the process to depend on the random state of the envi-

ronment.

Tijms (1972), Sahin (1979,1983), Federgruen and Schechner (1983), and Zipkin

(1986) consider compound renewal demands, whereas Zipkin (1986) consider a com-

pound counting process to model demands. There are others, who obtain steady state

distributions of the inventory level with general demand processes. We choose not to

review them since they do not obtain cost expressions. Interested readers can refer to
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Federgruen and Schechner (1983) and Zipkin (1986) for these references.

Continuously occurring demands are considered by Hadley and Whitin (1963), Bather

(1966), Puterman (1975), and Browne and Zipkin (1991). Note that in the case of contin-

uous demands, it is common to consider (Q, r)- policies, where an order in the amount of

Q is issued when the inventory level reaches r. It is clear that in the continuous demand

case, a (Q, r)-policy is equivalent to an (s, S)-policy with r = s and Q = S − s.

After obtaining cost expressions for expected performance measures, many of these

papers attempt to obtain the optimal value of the policy parameters s and S that

minimize the stationary cost. To our knowledge, none of these papers have taken the

next step of showing that the resulting (s, S)-policy is indeed optimal among the class of

all non-anticipative or admissible policies as was done by Iglehart (1963) in the discrete-

time framework. We should also note that the analysis in Iglehart (1963) is not quit

complete. See Beyer and Sethi (1999) for its completion and other details.

This next step in a continuous-review model with Poisson demands is taken by Zheng

(1994). Zheng incorporates an additional feature, namely, that discount opportunities

arrive according to another Poisson process independent of the demand process, and at

these opportunities an order incurring a smaller setup cost may be issued. He proves op-

timality of a policy known as (s, c, S)-policy in the context of average cost minimization.

Such policies are advocated in what is referred to as coordinated inventory replenish-

ment, and readers interested in this literature may consult Zheng (1994) for references.

Without the additional discount opportunities, an (s, c, S)-policy reduces to an (s, S)-

policy. After Zheng derives the expected cost expression, he minimizes it with respect

to the policy parameters. He then shows that the average cost satisfies the optimality

equation for the average cost criterion. In order to use, for this purpose, a verification

theorem (Theorem 2.1 in Ross (1983)) proved for bounded solutions, Zheng uses a trick

of relaxing the constraint that the order sizes must be non-negative. The relaxed model

provides a solution of the original problem, because any negative order or disposal will
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take place only at time zero when the initial inventory level is excessive. But such an

action at time zero will not have any effect on the average cost of the policy. We should

note, however, that the trick used by Zheng would not work in the discounted cost case.

On the other hand, Song and Zipkin (1993) formulate a continuous-review model with

state-dependent Poisson demands. They invoke the standard uniformization procedure

(Keilson (1979) and Van Dijk (1990)) to convert their problem to a discrete-time prob-

lem, and then use the discrete-time dynamic programming to obtain a state-dependent

(s, S)-policy. To be completely rigorous, a verification theorem is required to prove the

optimality. This is proved in Beyer, Sethi and Taksar (1998) for Markovian demands

and a fairly general surplus cost structure.

One may ask a question as to who was the first to prove the optimality of an (s, S)-

policy in the simplest continuous-review model with Poisson demand? In our opinion,

this issue is moot since the continuous-time result is a corollary of the discrete-time

result in light of the uniformization procedure dating back to Jensen (1953).

We now come to our continuous-review model with a demand that includes both

a constant component and a compound Poisson component. We assume the holding

cost to be increasing in the inventory level and the shortage cost to be increasing and

convex in the amount of backlog. We consider an infinite horizon model with average

and discounted costs criteria. We prove the optimality of (s, S)-policies in all cases under

consideration. Our paper makes the following important contributions:

i) We develop a unified approach of dealing with both the average cost and the

discounted cost criteria.

ii) We do not require surplus cost function to be convex or quasi-convex as has been

assumed in the literature.

iii) We prove that the optimal ordering level s is unique. We note that the order-up-to

level S may not be unique.

iv) We introduce new average discounted-cost formulas required for the development

4



of the unified approach, and we supply their intuitive interpretations.

v) Finally, we allow for a constant demand component. In addition to the interesting

fact that this includes EOQ as a special case, there are other reasons why this extension

is significant. In what follows we discuss these reasons.

Inclusion of a constant demand rate has never been considered in continuous-time

stochastic inventory models. Perhaps there are a number of reasons why this may be so.

One is that the presence of the constant demand term means that an (s, S)-policy may

order at instants other than the jump epochs of the compound Poisson process. This

means that the standard uniformization procedure (Kielson (1979) or Van Dijk (1990))

will not work. In the best case it would need to be modified, and in the worst case it

may not be altogether applicable.

On the other hand if one uses a QVI approach in the presence of a constant demand

rate, one gets a term involving the first derivative of the value function (resp. potential

function) in the discounted (resp. average) cost case. Since one cannot assume the value

function to be differentiable a priori, one would require a viscosity solution approach

(see, e.g., Fleming and Soner (1992) and Sethi and Zhang (1994)). Even if one could do

all this for the discounted cost objective, it would not be still easy to use the standard

vanishing discount approach for solving the average cost problem. This is because the

value function in the discounted case is K-convex, and not convex, and there is no

known result that ensures that the potential function obtained from taking the limit

of a continuously differentiable K-convex function, as the discount rate tends to zero,

is continuously differentiable. To push the vanishing discount approach through would

require a more detailed study of the structure of the value function so that as the discount

rate goes to zero, one obtains a continuously differentiable potential function that can

be shown to satisfy the average cost QVI.

Finally, the inclusion of a constant demand rate would allow us to take the next

step of adding the diffusion term to the demand. The extension would give us a model
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involving a demand modelled by the sum of a diffusion process and a compound Poisson

process. Moreover, the extension would be non-trivial on account of the facts that

diffusion can take negative values and that QVI would involve the second derivative of

the potential function. Indeed it may be possible to consider a more general demand

modelled by a process with stationary independent increments.

In view of all this, we believe that incorporation of a constant demand in stochastic

inventory models is a significant contribution

The plan of the remainder of the paper is as follows. In Section 2 we give a rigorous

formulation of the problem and formulate the main result concerning the optimality of

an (s, S)-policy. In Section 3 we construct a potential function simultaneously for both

discounted and average cost problems, and prove some of the required results while

relegating the proofs of others of technical nature to the Appendix. In section 4 we

complete the proof of the main result. Section 5 concludes the paper.

2 Formulation and Statement of Results

In order to precisely state the problems under consideration, we must specify the prob-

ability space, the demand process, the class of admissible ordering policies, the surplus

(inventory/backlog) dynamics, surplus and ordering costs, the discount rate, the objec-

tive functions, and the assumptions.

We model the demand by a stochastic process defined on a probability space (Ω,F , P ).

We assume the demand to consist of two components, deterministic and stochastic. The

deterministic portion of the demand is assumed to be a constant D ≥ 0 per unit time.

In order to define the stochastic portion of the demand, we let n(t), n(0) = 0, denote

a right-continuous process with intensity λ ≥ 0 and ξi ≥ 0, i = 1, 2, . . . , denote a

sequence of iid nonnegative random variables independent of n(t), and having the dis-

tribution G(·). The process n(t) provides a sequence of jump times and ξi denotes the

size of the demand that occurs at the ith jump of n(t). Thus, the cumulative demand

6



in the interval [0, t] is defined to be

y(t) = Dt + N(t), (1)

where

N(t) =
∑

i≤n(t)

ξi, t ≥ 0, (2)

is a compound Poisson process.

Next we define the class of admissible ordering policies. For this, let {Ft} denote the

family of sigma algebras generated by N(t), t ≥ 0. Further, let θi ≥ 0, i = 1, 2, . . . , be a

strictly increasing sequence of stopping times with respect to the filtration {Ft+0} and

ui > 0 be a positive random variable adapted to Fθi
, i = 1, 2, . . . . Simply speaking, θi

denotes the time of the ith order and ui denotes the amount of the ith order. Thus,

U = (θ1, u1, θ2, u2, . . .) (3)

is referred to as an admissible policy. Let U denote the set of all admissible policies.

Also, the cumulative total order amount M(t) from time 0 to time t can be defined as

M(t) =
∑

{i:θi<t}
ui. (4)

We can now easily see that the surplus level xU(t) at time t under a policy U ∈ U is

given by the equation

xU(t) = x−Dt−N(t) + M(t), (5)

where xU(0) = x is the initial surplus level at time zero. Note that the surplus x when

positive means inventory and when negative means backlog.

Remark 2.1 If at some time t, both the processes N(t) and M(t) jump, then the

process xU(t) is neither continuous from the left nor from the right.
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Next we define surplus and ordering costs. We let a nonnegative piecewise contin-

uously differentiable function f(x), f(0) = 0, denote the surplus cost. When x > 0,

the surplus cost refers to the cost of holding inventory and when x < 0, it refers to

the backlog cost. Some needed properties of the function f(x) will be specified later in

Theorem 1 and Remark 2.3.

The cost c(u) of ordering an amount u is given by

c(u) =

{
K + cu, if u > 0,
0, if u = 0,

where K > 0 denotes the fixed cost of ordering and c denotes the unit cost of each item

ordered.

Remark 2.2 Here we assume K > 0 for convenience in exposition. Nevertheless, the

results for the special case when K = 0, i.e., when there is no fixed cost, follow easily

from our analysis. Specifically, when K = 0, the optimal policy reduces to a base-stock

policy.

We consider both discounted and average cost objective functions in this paper. With

ρ ≥ 0 as the discount rate, the functionals we aim to minimize are stated below:

Fρ(x, U) = E

[∫ ∞

0
f(xU(t))e−ρtdt +

∞∑

i=0

c(ui)e
−ρθi

]
for ρ > 0, (6)

F0(x, U) = lim sup
T→∞

1

T
E




∫ T

0
f(xU(t))dt +

∑

{i:θi<T}
c(ui)


 for ρ = 0. (7)

It is easy to see that when ρ > 0 (resp. ρ = 0), Fρ(x, U) represents the total discounted

cost (resp. the average cost) over the infinite horizon, when one begins with x as the

initial inventory and U ∈ U as the policy. In what follows, we mean ρ ≥ 0, unless we

specify ρ = 0 or ρ > 0.

In order for the cost functionals (6)-(7) to take finite values, we assume that the

mean jump size is bounded, i.e., Eξi = ξ̄ < ∞.
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Our goal is to find for any given ρ ≥ 0,

Fρ(x) = inf
U∈U

Fρ(x, U), (8)

and a policy U∗
ρ ∈ U such that Fρ(x, U∗

ρ ) = Fρ(x).

For −∞ < s < S < +∞, let U s,S denotes the (s, S)-policy given by the following

function:

U s,S(x) =

{
0 if x > s,

S − x if x ≤ s.
(9)

Clearly U s,S ∈ U . Furthermore, let Ū ⊂ U denote the class of all (s, S)-policies.

Since we expect an (s, S)-policy to be optimal for the problem under consideration,

our analysis focuses on selecting a candidate (s, S)-policy in Ū , and then proving that

this candidate policy is optimal in the class U of all admissible policies.

For a given (s, S)-policy, let Q = S − s. Let τ(Q) = inf{t : y(t) ≥ Q} denote the

hitting time of the level Q by the total cumulative demand process y(t) defined in (1).

Note that y(0) = 0. Define

ϕρ(Q) = E

[∫ τ(Q)

0
e−ρtdt

]
. (10)

It is possible to interpret ϕρ(Q) as the expected discounted cycle time under the given

(s, S)-policy.

Consider the function

ψρ(S,Q) = E

[∫ τ(Q)

0
f(S − y(t))e−ρtdt + (K + cy(τ(Q)))e−ρτ(Q)

]
. (11)

The expression ψρ(S, Q) for any given S and Q represents the discounted cost of one

cycle, which begins at any time when the surplus process x(t) starts at the level S > 0,

decreases, and eventually crosses the level S−Q, at which instant an order in the amount

y(τ(Q)) restores the surplus level back to the level S. That ends the cycle.

Let us define the function aρ(S,Q) as the solution of the equation

E

[∫ τ(Q)

0
(f(S − y(t))− aρ(S, Q))e−ρtdt + (K + cy(τ(Q)))e−ρτ(Q)

]
= 0. (12)
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Then from (10)-(12), it is obvious that

aρ(S, Q) =
ψρ(S,Q)

ϕρ(Q)
. (13)

Note that for ρ = 0, the value

as,S
0 := a0(S, S − s) = F0(x, U s,S) (14)

for any x, i.e., it is the long-run average cost associated with the given (s, S)-policy,

which in this case coincides with the average cost of the cycle.

For ρ > 0, the value

as,S
ρ := aρ(S, S − s) (15)

will be referred to as the average discounted cost of a cycle for the given (s, S)-policy,

provided that the initial surplus level x(0) = S.

For ρ > 0, x(0) = S, and a policy U s,S, the cost of the first cycle is ψρ(S, S − s) and

the length of the first cycle is τ(S − s). It is immediate from this observation that

Fρ(S, U s,S) = ψρ(S, S − s) + Fρ(S, U s,S)E
[
e−ρτ(S−s)

]
.

It follows from (10) that E
[
e−ρτ(S−s)

]
= 1− ρφρ(S − s). Using (10) and (13) we obtain

Fρ(S, U s,S) = as,S
ρ /ρ. (16)

While as,S
ρ has been referred to as the average discounted cost per cycle when x(0) =

S, its minimization for ρ > 0 will not give us the candidate (s, S)-policy we are looking

for when x(0) 6= S. What we need, therefore, is some way of distributing the cost of

the first transient cycle beginning with x(0) = x 6= S and ending with the surplus level

S. With this insight, we are ready to find an (s, S)-policy in Ū as the candidate for the

optimal policy.

In the case ρ > 0, according to the definition of U s,S and (16), it is clear that for

x ≤ s, we have

Fρ(x, U s,S) = K + c(S − x) + Fρ(S, U s,S) = K − cx +
1

ρ
(cρS + aρ(S, S − s)) . (17)
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Denote for ρ ≥ 0,

dρ(S, Q) = cρS + aρ(S, Q) (18)

and

dρ = inf
S,Q

dρ(S, Q). (19)

If there exist sρ and Sρ such that dρ(Sρ, Sρ−sρ) = dρ, then in the case ρ = 0 according

to (14) for all x, and in the case ρ > 0 according to (17) for x < min(s, sρ), we have

Fρ(x, U sρ,Sρ) ≤ Fρ(x, U s,S). (20)

It will be shown in Section 4 that the inequality (20) is valid for all x and for any

admissible policy U ∈ U replacing U s,S in (20). More specifically, the main result of the

paper is the following theorem.

Theorem 1. If there exists a value σρ such that the function f(x) + cρx increases

to ∞ for x > σρ, and decreases from ∞ for x < σρ, then there exist sρ and Sρ, −∞ <

sρ < σρ < Sρ < ∞, such that

dρ = dρ(Sρ, Sρ − sρ) ≤ dρ(S, Q) for any S and Q, (21)

sρ is unique, and Fρ(x) = Fρ(x, U sρ,Sρ), i.e., the (sρ, Sρ)-policy is an optimal policy.

Remark 2.3 To guarantee the condition on f(x)+cρx used in Theorem 1, it is sufficient

to assume that f(0) = 0, f(x) is decreasing and convex on (−∞, 0), f(x) is increasing

on (0,∞), f(x) → ∞ as x → ∞, and limx→−∞ |f ′(x)| > cρ. It should be noted that

for ρ > 0, these conditions are sufficient but not necessary for f(x) + cρx to satisfy

the requirements of Theorem 1. For example, when ρ > 0, f(x) does not need to be

monotone increasing on (0,∞). It could even decrease as long as that decrease is less

than offset by the linearly increasing part cρx. Note also that the last limiting condition

on f ′(x) reduces to the standard condition p > cρ, when f(x) = −px for x < 0, with p

denoting the unit shortage cost. Otherwise, it would be optimal never to order, which
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can be accommodated by allowing s to take the value −∞. See also Remark 4.2 in

Sethi and Cheng (1997). It is also interesting to point out that σρ plays the role of zero

in the discounted case. Finally, we should note that our condition on the surplus cost

f(x) generalizes the convexity assumption used by Scarf (1960) and the quasi-convexity

assumption used by Veinott (1966).

Note that when ρ = 0, we have d0(S, S−s) = a0(S, S−s), the long-run average cost.

So obviously, if an (s, S)-policy is optimal for our problem, then minimizing d0(S, S− s)

over s and S should provide us with an optimal policy. What we have accomplished

here is an extension of this idea to the discounted case. This is done by recognizing that

there is an initial cost K +c(S−x) of bringing an initial inventory x < s immediately to

the level S. A part of this cost, namely K − cx, does not depend on S. The remaining

part, namely cS, depends on S. Since our purpose is to obtain the best (s, S)-policy for

a small x as our candidate, we allocate this cost to the average discounted cycle cost

aρ(S, S − s), and then minimize this ”modified” average discounted cycle cost.

First we note that the cost cS at time t = 0 is equivalent to a cost rate of cρS per

unit time. Over the cycle, the expected present value of this cost rate is

E

[∫ τ(Q)

0
cρSe−ρtdt

]
= cρSϕρ(Q). (22)

When added to the cycle cost ψρ(S,Q) obtained in (11), we obtain a modified cycle cost

as cρSϕρ(Q) + ψρ(S, Q). Then the modified average discounted-cost of the cycle is

cρSϕρ(Q) + ψρ(S,Q)

ϕρ(Q)
= cρS + aρ(S,Q), (23)

which is precisely dρ(S, Q) that we had obtained from (17) as the appropriate quantity

to minimize for obtaining the candidate (s, S)-policy.

To summarize, the candidate (s, S)-policy minimizes the modified average discounted

cycle cost. When ρ = 0, we have cρS = 0, and so the modified cost is the same as

the average cycle cost a0, and the candidate (s, S)-policy is the best policy in Ū that
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minimizes the average cost. No modification of the average cost is required when ρ = 0

is consistent with the known intuition that the initial surplus level is of no consequence

in the determining the average cost of a policy in Ū . For ρ > 0, the candidate policy is

the best policy in Ū for any surplus level ”sufficiently” small. Clearly then, if an (s, S)-

policy is optimal for our problem for any initial surplus level as we expect, then it must

be optimal for a sufficiently small x as well. And, therefore, we obtain our candidate

(s, S)-policy by minimizing the modified cycle cost corresponding to small x, and do not

concern ourselves with the modification of the average cycle cost by allocating to it, its

share of the cost of the first transient cycle when x is large.

To treat the cases with ρ = 0 and ρ > 0 in a unified manner for sρ > −∞, we

modify the cost function Fρ(x) for ρ > 0 by subtracting from it an average discounted

cost aρ = aρ(Sρ, Sρ − sρ) corresponding to the (sρ, Sρ)-policy. Note that for ρ > 0. the

dynamic programming equation in the integral form can be written as

Fρ(x) = inf
U∈U

E




∫ T

0
f(xU(t))e−ρtdt +

∑

{i:θi<T}
c(ui)e

−ρθi + Fρ(x
U(T ))e−ρT


 (24)

for any T > 0. By subtracting aρ from both sides and recognizing that aρ =
∫ T
0 aρρe−ρtdt+

aρe
−ρT , we can rewrite (24) as

Wρ(x) = inf
U∈U

E




∫ T

0
(f(xU(t))− aρ)e

−ρtdt +
∑

{i:θi<T}
c(ui)e

−ρθi + Wρ(x
U(T ))e−ρT


 , (25)

where

Wρ(x) = Fρ(x)− aρ

ρ
for ρ > 0. (26)

In the case when ρ = 0, the function satisfying (25) is called a potential function, and

together with a number a0 and a policy U∗
0 which provides the infimum in (25), they are

called a canonical triplet written as {a0,W0(x), U∗
0}; see Dynkin and Yushkevich (1978).

Furthermore, a0 turns out to be the minimum average cost, i.e.,

F0(x) = a0 for any x. (27)
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Our analysis and the derivation of (25) has permitted the extension of the notions of

the potential function and the canonical triplet to the case ρ > 0. Accordingly, in Section

3 we will construct for ρ ≥ 0, a canonical triplet {aρ,Wρ(x), U∗
ρ} that is continuous in

ρ ≥ 0. In other words, we construct a number aρ, a potential function Wρ(x) satisfying

(25), and a policy U∗
ρ which provides the infimum in (25). As will be seen later, it is the

(sρ, Sρ)-policy mentioned earlier that would give us the policy U∗
ρ .

Remark 2.4 Note that the relation (26) when ρ > 0 has the interpretation that the

potential function is the difference between the optimal cost (or the value function)

and the capitalized value of the a cost stream, equal to the weighted average cost aρ,

discounted at the rate ρ.

Theorem 1 will be proved in Section 4. There we will show using a verification

theorem that Theorem 1 follows from (25) and the properties of the constructed Wρ(x)

derived in the next section.

3 Construction of the Potential Function

Using functions ψρ(S, Q) and ϕρ(Q), we construct in four steps a potential function

Wρ(x), and show that it satisfies relation (25).

In Step 1, we begin with a policy U s,S and construct a function P s,S
ρ (x), which

satisfies the following relation analogous to (25), i.e.,

P s,S
ρ (x) = E

[∫ T

0
(f(xs,S(t))− as,S

ρ )e−ρtdt

+
∑

{i:θs,S
i <T}

(
K + c(S − xs,S(θs,S

i ))
)
e−ρθs,S

i + P s,S
ρ (xs,S(T ))e−ρT


 ,

(28)

where θs,S
i is the time of the ith crossing of the surplus level s by the process xs,S(t) :=

xUs,S
(t), i = 1, 2, . . . . Note that if the initial surplus x is less or equals to s, then θs,S

1 = 0,
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and it is, by definition, the time of the first crossing of the level s. Just as in (26) and

(27), we have

P s,S
ρ (x) = Fρ(x, U s,S)− as,S

ρ

ρ
for ρ > 0, (29)

and

as,S
0 = F0(x, U s,S) for any x. (30)

In Step 2, we give necessary conditions for finite sρ and Sρ to satisfy (21).

In Step 3, we show that the constructed function

Pρ(x) = P sρ,Sρ
ρ (x) (31)

satisfies the quasi-variational inequalities (QVI) for our problem. These inequalities are

specified later as (47) and (49). In Remark 3.5, we rewrite the QVI for the discounted

case in the form of a dynamic programming equation.

In Step 4, we show that from the fact that Pρ(x) satisfies the QVI, it follows

that Pρ(x), aρ, and the (sρ, Sρ)-policy solve (25). Setting Wρ(x) = Pρ(x) and U∗
ρ =

U sρ,Sρ completes our construction of the potential function and the canonical triplet

{aρ,Wρ(x), U∗
ρ}.

In what follows we carry out the details of these four steps.

STEP 1. Let

mρ(S, Q) : = ψρ(S, Q) + cρSϕρ(Q)

= E
[∫ τ(Q)

0 (f(S − y(t)) + cρS)e−ρtdt + (K + cy(τ(Q)))e−ρτ(Q)
]
.

(32)

Then according to (18) and (13),

dρ(S,Q) =
mρ(S, Q)

ϕρ(Q)
. (33)

We begin with the following lemma.

Lemma 1. The function P s,S
ρ (x) defined in (29) for ρ > 0 can be specified as

P s,S
ρ (x) =





K + c(S − x) if x ≤ s,

mρ(x, x− s)− dρ(S, S − s)ϕρ(x− s) + c(S − x) if x > s.
(34)
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Furthermore, P s,S
ρ (x) for ρ ≥ 0 satisfies (28), where P s,S

0 (x) is obtained by setting ρ = 0

in (34).

Proof. First we consider the case ρ > 0. If x ≤ s, then (34) follows from (29) and

(17). If x > s, then according to the (s, S)-policy we do not order until y(t) ≥ x− s, at

which time we order the amount y(τ(x− s)) + (S − x) and jump to the inventory level

S. These observations, the definition (32) of mρ(x, x − s), and the expression (16) for

Fρ(S, U s,S) imply

Fρ(x, U s,S) = E

[∫ τ(x−s)

0
f(x− y(t))e−ρtdt

+
(
K + cy(τ(x− s)) + (S − x)c + Fρ(S, U s,S)

)
e−ρτ(x−s)

]

= mρ(x, x− s)− cρxϕρ(x− s) + E

[(
c(S − x) +

as,S
ρ

ρ

)
e−ρτ(x−s)

]
.

(35)

From the fact that E
[(

1− e−ρτ(x−s)
)]

= ρϕρ(x − s) and the relation between as,S
ρ

and dρ(S, S − s) (see (13), (15), and (18)), equation (35) reduces to

Fρ(x, U s,S) = mρ(x, x− s)− cρxϕρ(x− s) + c(S − x) +
as,S

ρ

ρ

+

[
c(S − x) +

as,S
ρ

ρ

]
ρϕρ(x− s)

= mρ(x, x− s)− dρ(S, S − s)ϕρ(x− s) + c(S − x) +
as,S

ρ

ρ
.

(36)

This proves (34) for x > s and completes the proof of (29).

It follows from (29) and (6) that

P s,S
ρ (x) = E

[∫ ∞

0
(f(xUs,S

(t))− as,S
ρ )e−ρtdt +

∞∑

i=1

(K + cui)e
−ρθs,S

i

]

= E




∫ T

0
(f(xUs,S

(t))− as,S
ρ )e−ρtdt +

∑

{i:θs,S
i <T}

(K + cui)e
−ρθs,S

i




+E




∫ ∞

T
(f(xUs,S

(t))− as,S
ρ )e−ρtdt +

∑

{i:θs,S
i ≥T}

(K + cui)e
−ρθs,S

i


 .

(37)
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This relation proves (28) for ρ > 0, since the second expectation in the right-hand side

of (37) equals e−ρTE
[
P s,S

ρ (xUs,S
(T ))

]
.

Note that the function P s,S
ρ (x) is defined also for ρ = 0. Taking the limit as ρ → 0

in (28), we prove (28) for ρ = 0. Dividing (28) by T for ρ = 0 and taking the limit as

T →∞, we obtain (30).

STEP 2. For obtaining the necessary conditions for (21) to hold, we derive the following

results in the next two lemmas proved in Appendix.

Lemma 2. The function ϕρ(Q) has the following derivative with respect to Q:

ϕ′ρ(Q) =
1

D
E

[
e−ρτ(Q)I[y(τ(Q))=Q]

]
. (38)

where the indicator function IA(ω) = 1 if ω ∈ A, and IA(ω) = 0 otherwise.

Lemma 3. The function mρ(S, Q) has the following partial derivative with respect

to Q:
∂

∂Q
mρ(S,Q) = ϕ′ρ(Q)

[
f(S −Q)− ρK + c(D + ξ̄λ + ρ(S −Q))

]
, (39)

where ξ̄ =
∫∞
0 zdG(z), the expected value of the Poisson demand.

From (33) and (39), it follows that

∂

∂Q
dρ(S, Q) =

ϕ′ρ(Q)

ϕ2
ρ(Q)

ερ(S, Q), (40)

where

ερ(S,Q) =
ϕρ(Q)

ϕ′ρ(Q)

∂

∂Q
mρ(S, Q)−mρ(S,Q)

= ϕρ(Q)[f(S −Q)− ρK + c(D + ξ̄λ + ρ(S −Q))]−mρ(S, Q).

(41)

Denote the partial derivative of mρ(S, Q) with respect to S as

m̃ρ(S, Q) :=
∂

∂S
mρ(S, Q) = E

[∫ τ(Q)

0
(f ′(S − y(t)) + cρ)e−ρtdt

]
. (42)

The necessary conditions for sρ and Sρ, −∞ < sρ < Sρ < +∞, to satisfy (21) are

ερ(Sρ, Sρ − sρ) = 0, m̃ρ(Sρ, Sρ − sρ) = 0. (43)
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According to (33), these conditions can be rewritten in the form

dρ = f(sρ)− ρK + c(D + ξ̄λ + ρsρ), (44)

E

[∫ τ(Sρ−sρ)

0
(f ′(Sρ − y(t)) + cρ)e−ρtdt

]
= 0 (45)

Remark 3.1 Requirements of Theorem 1 on the function f(x) + cρx and (45) imply

that if sρ and Sρ exist, then sρ < σρ < Sρ.

Remark 3.2 It follows from (44) and the conditions on f(x) + cρx that if sρ exists,

then it is unique. It proves the statement of Theorem 1 regarding the uniqueness of sρ.

Remark 3.3 In Section 4 we show that there exists an S̄ρ ≤ +∞ such that for any

given S, σρ < S < S̄ρ, there exists a unique Q(S) such that m̃ρ(S,Q(S)) = 0. However,

it is possible that for a given s there may exist more than one value of S for which

m̃ρ(S, S − s) = 0. So, we do not know if Sρ is unique.

Remark 3.4 It is straightforward to check that the two conditions in (43) are equivalent

to the following two conditions: (a) the function Pρ(x) − (Sρ − x)c has a minimum at

x = Sρ and (b) the function Pρ(x) := P sρ,Sρ
ρ (x) is smooth (continuously differentiable)

at the point x = sρ. The condition (b) is commonly referred to as a smooth pasting

condition in the literature.

STEP 3. Now we will prove the following lemma.

Lemma 4. The potential function Pρ(x) satisfies the following relations:

ρPρ(x) = f(x)− aρ + λE [Pρ(x− ξ)− Pρ(x)]−DP ′
ρ(x) for x > sρ. (46)

ρPρ(x) ≤ f(x)− aρ + λE [Pρ(x− ξ)− Pρ(x)]−DP ′
ρ(x) for −∞ < x < ∞, (47)

Pρ(x) = K + c(Sρ − x) + Pρ(x + (Sρ − x)) for x ≤ sρ, (48)

Pρ(x) ≤ K + cu + Pρ(x + u) for all −∞ < x < ∞ and u > 0, (49)
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Remark 3.5 Inequalities (47) and (49) are called quasi-variational inequalities (QVI)

in the literature devoted to the control of continuous processes with jumps. They can

be rewritten for the value function Fρ(x), ρ > 0, as the following dynamic programming

equation:

0 = min





minu>0[K + cu + Fρ(x + u)− Fρ(x)] (order),

f(x) + λE[Fρ(x− ξ)− Fρ(x)]−DF ′
ρ(x)− ρFρ(x) (no order),

= minu≥0[K(1− δ(u)) + cu + Fρ(x + u)− Fρ(x)]

+δ(u)
(
f(x) + λE[Fρ(x− ξ)− Fρ(x)]−DF ′

ρ(x)− ρFρ(x)
)
,

(50)

where δ(u) = 1 if u = 0, and δ(u) = 0 if u 6= 0. When ρ = 0, the dynamic programming

equation is replaced by an ergodic equation in terms of the average cost a0 and the

potential function W0(x). This equation is

0 = minu≥0[K(1− δ(u)) + cu + W0(x + u)−W0(x)]

+δ(u)
(
f(x)− a0 + λE[W0(x− ξ)−W0(x)]−DW ′

0(x)
)
.

(51)

Proof of Lemma 4. For ρ > 0, (46) follows from the definition (6) of Fρ(x, U), the

equality Pρ(x) = Fρ(x, U sρ,Sρ)− aρ/ρ, and the fact that xsρ,Sρ(t) corresponding to U sρ,Sρ

is a Markov process. The case ρ = 0 follows by continuity in ρ.

For proving (47), consider

Aρ(x) = ρPρ(x) + DP ′
ρ(x)− λE [Pρ(x− ξ)− Pρ(x)] . (52)

Relation (47) is equivalent to

Aρ(x) ≤ f(x)− aρ for −∞ < x < +∞. (53)

For x > sρ, according to (46) we have the equality in (53). For x < sρ, according to (31)

and (34), Pρ(x) = K + c(Sρ − x) and E [Pρ(x− ξ)] = K + c(Sρ − x) + cξ̄. Using these

relations, the equality ρK − Dc − λcξ̄ = f(sρ) + cρsρ − dρ (see (44)), and the relation

19



(18) between dρ and aρ, we get for x < sρ,

Aρ(x) = ρK + cρ(Sρ − x)−Dc− λcξ̄ = f(sρ) + cρsρ − dρ + cρSρ − cρx

= f(x)− aρ + f(sρ) + cρsρ − (f(x) + cρx).
(54)

It follows from Remark 3.1 that sρ < σρ. According to the assumptions of Theorem 1,

the function f(u)+cρu decreases on (x, sρ). Consequently, f(sρ)+cρsρ−(f(x)+cρx) < 0

for x < sρ. This completes the proof of (53) and, in turn, of (47).

From (34) for x = Sρ, it follows that Pρ(Sρ) = 0. So (48) follows from (34).

To complete the proof of Lemma 4, it remains to prove (49) for x > sρ. To this end,

denote fρ(x) := f(x + sρ),

mρ(x) := mρ(x+sρ, x) = E

[∫ τ(x)

0
(fρ(x− y(t)) + cρ(x + sρ))e

−ρtdt + (K + cy(τ(x)))e−ρτ(x)

]
,

(55)

and

P̂ρ(x) :=





K if x ≤ 0,

mρ(x)− dρϕρ(x) if x > 0.
(56)

It follows from the definition (34) of Pρ(x) and (56) that P̂ρ(x) = Pρ(x+ sρ)− c(Sρ−
sρ − x). So for completing the proof of Lemma 4, it suffices to prove that

P̂ρ(x) ≤ K + P̂ρ(x + u) for all x > 0 and u > 0, (57)

i.e., P̂ρ(x) is K-nondecreasing.

From the definition (56) of Pρ(x), the definition (55) of mρ(x), and the definition of

sρ and Sρ, it follows that

P̂ρ(x) ≥ 0 for −∞ < x < +∞, P̂ρ(Sρ − sρ) = 0. (58)

It follows from the definition (56) of P̂ρ(x), the definition (55) of mρ(x), expressions

(39) and (42) for partial derivatives of mρ(S, Q), and the expression for dρ from the
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necessary condition (44) that

d

dx
P̂ρ(x) =

∂

∂S
mρ(S, Q)

∣∣∣∣
S=x+sρ,
Q=x

+
∂

∂Q
mρ(S, Q)

∣∣∣∣
S=x+sρ,
Q=x

− dρ
d

dQ
ϕρ(Q)

∣∣∣∣
Q=x

=
∂

∂S
mρ(S, Q)

∣∣∣∣
S=x+sρ,
Q=x

= E

[∫ τ(x)

0

(
f ′(sρ + x− y(t)) + cρ

)
e−ρtdt

]
.

(59)

Since P̂ρ(0) = K (see (56)), P̂ρ(σρ − sρ) = 0 (see (58)), and f(x) + cρx decreases for

x < σρ, we have from (59) that P̂ρ(x) decreases on (0, σρ−sρ) from K to 0. Consequently,

P̂ρ(x) ≤ K for 0 < x < σρ − sρ. (60)

Using (60) and the fact that P̂ρ(x + u) ≥ 0, we get

P̂ρ(x + u)− P̂ρ(x) ≥ 0−K = −K for 0 < x < σρ − sρ,

which proves (57) for 0 < x < σρ − sρ. To consider the case x > σρ − sρ, we need the

following preliminary lemma which is also of independent interest.

Lemma 5. For any 0 < v ≤ x and u > 0,

P̂ρ(x + u)− P̂ρ(x) = E

[∫ τ(v)

0

(
fρ(x + u− y(t))− fρ(x− y(t)) + cρu

)
e−ρtdt

]

+E
[
e−ρτ(v)

(
P̂ρ(x + u− y(τ(v)))− P̂ρ(x− y(τ(v)))

)]
.

(61)

Proof. Let x > 0. If y(τ(x)) ≥ x+u, then τ(x+u) = τ(x) and y(τ(x+u)) = y(τ(x)).

If y(τ(x)) < x + u, then for a fixed y(τ(x)), the difference τ(x + u)− τ(x) has the same

distribution as that of τ(x + u− y(τ(x))). It follows from here that

ϕρ(x + u)− ϕρ(x) = E

[
e−ρτ(x)

∫ τ(x+u)−τ(x)

0
e−ρtdt

]

= E
[
e−ρτ(x)ϕρ(x + u− y((τ(x)))I[y(τ(x))<x+u]

]
,

(62)

mρ(x + u)−mρ(x) = E

[∫ τ(x)

0
∆ρ

u(x− y(t))e−ρtdt

]
+ r(x, u), (63)

where

∆ρ
u(x) = fρ(x + u)− fρ(x) + cρu, (64)
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and

r(x, u) := E

[∫ τ(x+u)

τ(x)

(
fρ(x + u− y(t)) + cρ(x + u + sρ)

)
e−ρtdt

]

+E
[(

(K + cy(τ(x + u))e−ρτ(x+u) − (K + cy(τ(x)))e−ρτ(x)
)]

= E

[∫ τ(x+u)

τ(x)

(
fρ(x + u− y(t)) + cρ(x + u + sρ − y(τ(x)))

)
e−ρtdt

]

+E
[(

cy(τ(x))
(
e−ρτ(x) − e−ρτ(x+u)

)
− (K + cy(τ(x)))e−ρτ(x)

)]

+E
[(

K + c(y(τ(x + u))− y(τ(x)))e−ρτ(x+u) + cy(τ(x))e−ρτ(x+u)
)]

= E

[
e−ρτ(x))

∫ τ(x+u)−τ(x)

0

(
fρ

(
x + u− y(τ(x)) + (y(t + τ(x)))− y(τ(x))

)

+cρ(x + u + sρ − y(τ(x))
)
e−ρ(t)dt

]

+E
[
e−ρτ(x)

(
K + c

(
y(τ(x + u))− y(τ(x))

)
e−ρ(τ(x+u)−τ(x)) −K

)]
.

(65)

If y(τ(x)) ≥ x + u, then the right-hand side of (65) is equal to zero. If y(τ(x)) < x + u,

then for fixed τ(x) and y(τ(x)), the difference y(τ(x + u)) − y(τ(x)) has the same

distribution as that of y(τ(x + u− y(τ(x))), the difference τ(x + u)− τ(x) has the same

distribution as that of τ(x + u− y(τ(x)), and the process y(t + τ(x)))− y(τ(x)) has the

same distribution as that of y(t). It follows from these and (65) that

r(x, u) = E
[
e−ρτ(x)

(
mρ(x + u− y(τ(x)))−K

)
I[y(τ(x))<x+u]

]
. (66)

It follows from the definition (56) of P̂ρ(x), (62), (63), and (66) that

P̂ρ(x + u)− P̂ρ(x) = mρ(x + u)−mρ(x)− dρ(ϕρ(x + u)− ϕρ(x))

= E

[∫ τ(x)

0
∆ρ

u(x− y(t))e−ρtdt

]
+ E

[
e−ρτ(x)

((
mρ(x + u− y(τ(x)))

−dρϕρ(x + u− y(τ(x)))
)
−K

)
I[y(τ(x))<x+u]

]
= E

[∫ τ(x)

0
∆ρ

u(x− y(t))e−ρtdt

]

+E
[
e−ρτ(x)

(
P̂ρ(x + u− y(τ(x)))− P̂ρ(x− y(τ(x)))

)]
.

(67)
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The last equality holds since P̂ρ(x− y(τ(x))) = K, and if y(τ(x)) > x + u, then P̂ρ(x +

u− y(τ(x))) = K. This proves Lemma 5 for v = x.

For 0 < v < x, we can rewrite the first expectation in the right-hand side of (67) in

the form

E

[∫ τ(x)

0
∆ρ

u(x− y(t))e−ρtdt

]
= E

[∫ τ(v)

0
∆ρ

u(x− y(t))e−ρtdt + e−ρτ(v)J

]
, (68)

where

J = E

[∫ τ(x)−τ(v)

0
∆ρ

u

(
x− y(τ(v)− (y(t + τ(v))− y(τ(v)))

)
e−ρtdt

∣∣∣∣∣Fτ(v)

]
. (69)

Using (67) with x− y(τ(v)) instead of x, and the same arguments as those for obtaining

(66), we get from (69),

J = P̂ρ(x + u− y(τ(v)))− P̂ρ(x− y(τ(v)))

−E
[
e−ρ(τ(x)−τ(v))

(
P̂ρ(x + u− y(τ(x)))− P̂ρ(x− y(τ(x)))

)∣∣∣∣Fτ(v)

]
.

(70)

Substitution of (68) and (70) into (67) completes the proof of Lemma 5.

For x > σρ − sρ, consider the equality (61) from Lemma 5 with v = x − σρ + sρ.

Then the integrand in the first term of the right-hand side of (61) is positive since

f(x) + cρx increases for x > σρ, P̂ρ(x + u − y(τ(x − σρ + sρ))) ≥ 0 due to (58), and

P̂ρ(x−y(τ(x−σρ+sρ))) ≤ K due to (60) and the inequality x−y(τ(x−σρ+sρ)) ≤ σρ−sρ.

This completes the proof of (57), and consequently of Lemma 4.

Remark 3.6 In the deterministic case when N(t) ≡ 0, the problem reduces to the

EOQ problem considered by Beyer and Sethi (1998) under the same assumptions on

the surplus cost function f(x) as here. If N(t) ≡ 0, ρ = 0, f(x) = hx for x > 0, and

f(x) = p|x| for x < 0, then

m(S, Q) =
hS2

2D
+

p(S −Q)2

2D
+ K, ϕ(Q) =

Q

D
, a0(S,Q) =

hS2 + p(S −Q)2 + 2DK

2Q
.

(71)
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Minimization of a0(S, Q) gives the well-known results

S0 =

√
2pDK

h(h + p)
, s0 = −

√
2hDK

p(h + p)
, a0 =

√
2phDK

(h + p)
. (72)

Furthermore, when no backlogging is allowed, i.e., when p →∞, we get the classic EOQ

square-root formula

S0 =
√

2DK/h (73)

along with s0 = 0 and a0 =
√

2hDK.

Remark 3.7 In the case when no backlogging is allowed, Sivazlian (1974) shows that

the best (s, S)-policy in Ū for a continuous-review model with the Poisson demand with

intensity λ gives s0 = 0 and S0 satisfies

S0(S0 − 1) ≤ 2K/(λh) ≤ S0(S0 + 1), (74)

where we note that 1/λ is the expected demand per unit time associated with the

Poisson process. Note that (74) is the discrete-time version of the EOQ formula when

the demand equals 1/λ in each period.

Remark 3.8 In the case when D = 0, the function ϕ(Q) still has a derivative which is

equal to the limit of (38). All other formulas remain the same.

STEP 4. For each sample path of the process xU(t) obtained from (5) using an admis-

sible policy U , Dynkin’s formula leads to

e−ρT Pρ(x
U(T ))− Pρ(x

U(0)) =
∫ T

0

(
−ρPρ(x

U(t))−D
d

dx
Pρ(x

U(t))

)
e−ρtdt

+
∫ T

0
(Pρ(x

U(t))− Pρ(x
U(t− 0))e−ρtdN1(t)

+
∑

{i:θi<T}
(Pρ(x

U(θi) + ui)− Pρ(x
U(θi)))e

−ρθi .

(75)
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From the definition of the Poisson process and the independence of ξi from this process,

it follows that

E

[∫ T

0
(Pρ(x

U(t)) −Pρ(x
U(t− 0))e−ρtdN1(t)

−
∫ T

0
(Pρ(x

U(t− 0)− ξ)− Pρ(x
U(t− 0)))e−ρtλdt

]
= 0.

(76)

Taking the expectation in (75), using (76), and substituting (52) there, we can rewrite

it as

Pρ(x
U(0)) = E


e−ρT Pρ(x

U(T )) +
∫ T

0
Aρ(x

U(t))e−ρtdt +
∑

{i:θi<T}
(K + cui)e

−ρθi




−E


 ∑

{i:θi<T}
(Pρ(x

U(θi) + ui)− Pρ(x
U(θi) + (K + cui))e

−ρθi


 .

(77)

It follows from (77), (49), and (53) that

Pρ(x) ≤ E




∫ T

0
(f(xU(t))− aρ)e

−ρtdt +
∑

{i:θi<T}
c(ui)e

−ρθi + Pρ(x
U(t))e−ρT


 . (78)

Since for U sρ,S
ρ , the inequality (78) becomes an equality, the proof that Pρ(x) satisfies

(25) is completed.

4 Proof of Theorem 1

For proving Theorem 1, we need the following lemma which states that we can restrict

the class of policies to only those which do not result in very large surplus levels at any

time during the infinite horizon.

Lemma 6. There exists x̃ such that for any initial surplus level x and any strategy

U ∈ U , there exists a strategy Ũ ∈ U such that xŨ(t) < x̃ for t > θ1 and Fρ(x, Ũ) ≤
Fρ(x, U).

Proof. See Appendix.
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Let us now show that Theorem 1, in the case when sρ and Sρ exist, follows from (25),

Lemma 5, and the fact that the constructed Wρ(x) is linear in x for x < sρ. Indeed,

these properties allows us to take the limit as T → ∞ in (25). More specifically for

ρ > 0, the last term in (25) vanishes as T →∞, and using (26) we obtain the result.

Likewise for ρ = 0, the limit of (25) divided by T as T →∞ gives

F0(x) = a0. (79)

It remains to prove the existence of sρ and Sρ. Let Sn and Qn be such that

lim
n→∞ dρ(Sn, Qn) = inf

S,Q
dρ(S, Q).

Since f(x) + cρx increases for x > σρ (decreases for x < σρ), it follows from (32)

and (33) that if Q < S − σρ (S < σρ correspondingly), then dρ(S, Q) > dρ(Q − σρ, Q)

(dρ(S, Q) > dρ(σρ, Q) correspondingly). That is, we can assume without loss of general-

ity that Qn ≥ Sn − σρ and Sn ≥ σρ.

Since f(x) + cρx increases to ∞ as x →∞, it follows from (32), (33) and (10) that

if Q > S − σρ then dρ(S, Q) → ∞ as S → ∞. That is, we can assume without loss of

generality that Sn is bounded.

Since f(x) + cρx decreases for x < σρ from ∞ it follows from (40) and (41) that
∂

∂Q
dρ(S,Q) > 0 if Q − S is large enough. That is, using boundedness of Sn, we can

assume without loss of generality that Qn is bounded. The existence of sρ and Sρ follows

now from the continuity of dρ(S,Q).

5 Conclusions

We show the optimality of an (s, S) policy for a continuous-review stochastic inventory

model with demand consisting of a compound Poisson process and a constant demand

rate. While the incorporation of a constant demand rate into the existing models involv-

ing only a compound Poisson demand appear to be innocuous, their optimality proofs
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do not extend easily to deal with the generalized problem. We, therefore, develop a

new approach of showing the optimality of an (s, S) policy for the generalized problem.

Importantly, our approach is unified in the sense that it addresses both the discounted

cost and average cost criteria. This is done by introduction of new average discounted-

cost formulas having appealing intuitive interpretations. Moreover, the approach does

not require the assumptions of convexity or quasi-convexity of the surplus cost used in

the literature. In addition, we show that the optimal ordering level s is unique. On the

other hand, the optimal order-up-to level S is not necessarily unique.

An important byproduct of our generalization is that its optimal (s, S) policy reduces

to the well-known EOQ formula as a special case, when the compound Poisson demand

is turned off by setting its intensity to zero. Our proof therefore represents an alternative

rigorous proof of the EOQ formula, not easily found in the literature.

Appendix

Proof of Lemma 2. Since the process N(t) is right-continuous, we have y(τ(Q)) =

y(τ(Q)+0). If process y(t) reaches the level Q continuously, then the probability that it

has a jump at the same instant is zero, i.e., P(y(τ(Q)− 0) = Q, y(τ(Q) + 0) > Q) = 0.

Note that

if y(τ(Q)) ≥ Q + δ for some δ > 0, then τ(Q + δ) = τ(Q) and y(τ(Q + δ)) = y(τ(Q)).

(80)

According to (10) and (80) for δ > 0, we have

ϕρ(Q + δ)− ϕρ(Q)

δ
= E

[
e−ρτ(Q) − e−ρτ(Q+δ)

δρ
I[Q<y(τ(Q))<Q+δ]

]

+E

[
e−ρτ(Q) − e−ρτ(Q+δ)

δρ
I[y(τ(Q))=Q]I[N(τ(Q+δ))6=N(τ(Q)]

]

+E

[
e−ρτ(Q) − e−ρτ(Q+δ)

δρ
I[y(τ(Q))=Q]I[N(τ(Q+δ))=N(τ(Q)]

]
.

(81)
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Note that τ(Q + δ)− τ(Q) ≤ δ/D. Therefore, 0 ≤ e−ρτ(Q) − e−ρτ(Q+δ)

δ
≤ 1/D. Since

P [N(τ(Q + δ)) 6= N(τ(Q)] → 0 and P [Q < y(τ(Q)) < Q + δ)] → 0 as δ → 0, the first

and the second terms on the right-hand side of (81) tend to zero as δ → 0. From the

fact that P [N(τ(Q + δ)) = N(τ(Q)] → 1 as δ → 0 and τ(Q + δ)) = τ(Q) + δ/D if

N(τ(Q+δ)) = N(τ(Q)), the statement of Lemma 2 follows for the right derivative. The

proof for the left derivative is analogous.

Proof of Lemma 3. Denote f̃(v) = f(S − v) + cρS. According to (11) and (80),

mρ(S, Q + δ)−mρ(S, Q)

δ

=
1

δ
E

[(∫ τ(Q+δ)

τ(Q)
f̃(y(t))e−ρtdt + c(y(τ(Q + δ)))e−ρτ(Q+δ) − c(y(τ(Q)))e−ρτ(Q)

)
I[A1]

]

+E

[(
1

δ

∫ τ(Q+δ)

τ(Q)
f̃(y(t))e−ρtdt +

c(y(τ(Q + δ)))e−ρτ(Q+δ) − c(y(τ(Q)))e−ρτ(Q)

δ

)
I[A2]

]

+E

[(∫ τ(Q+δ)

τ(Q)
f̃(y(t))e−ρtdt + c(y(τ(Q + δ)))e−ρτ(Q+δ) − c(y(τ(Q)))e−ρτ(Q)

)
I[A3]

]
,

(82)

where A1 = {ω : Q < y(τ(Q)) < Q + δ}, A2 = {ω : y(τ(Q)) = Q,N(τ(Q + δ)) =

N(τ(Q)}, and A3 = {ω : y(τ(Q)) = Q,N(τ(Q + δ)) 6= N(τ(Q))}.
The first term on the right-hand side of (82) tends to zero as δ → 0. If y(τ(Q)) = Q

and N(τ(Q + δ)) = N(τ(Q)), then τ(Q + δ) = τ(Q) + δ/D and y(τ(Q + δ)) = y(τ(Q) +

δ) = Q + δ. Therefore, the second term tends to ϕ′ρ(Q)
(
f̃(Q)− ρ(K + cQ) + Dc

)
. On

account of P [N(τ(Q + δ)) = N(τ(Q) + 1] /δ → λ and y(τ(Q+δ)) = y(τ(Q))+ξ = Q+ξ,

if N(τ(Q+ δ)) = N(τ(Q))+1 and y(τ(Q)) = Q, the third term tends to ϕ′ρ(Q)λcξ̄. This

proves the lemma.

Proof of Lemma 6. Let us show at first that if U = (θ1, u1, θ2, u2, . . .) is fixed and

xU(θn) > 0 with positive probability for some n > 0, then there exists a strategy Ũ ∈ U
for which Fρ(x, Ũ) ≤ Fρ(x, U). Indeed, consider the following strategy Ũ . For 1 ≤ i < n,

it coincides with U . If xU(θn) ≤ 0, it coincides with U also for i ≥ n.

If xU(θn) > 0, we do not order at θn, wait for one of the two following events, and
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behave accordingly as follows. If the new process xŨ(t) crosses the level 0 before θn+1, we

order ũn = un at the time θ̃n of crossing the level 0, and after that we continue to use U .

If the new process xŨ(t) does not cross the level 0 before θn+1, we order ũn = un + un+1

at θ̃n = θn+1, and after that we continue to use U .

It is evident that xŨ(t) = xU(t) for t /∈ [θn, θ̃n], and xŨ(t) = xU(t)−un for t ∈ [θn, θ̃n].

Since f(x) increases for x > 0 and xŨ(t) > 0 for t ∈ [θn, θ̃n], we have Fρ(x, Ũ) ≤ Fρ(x, U).

So we can consider only such strategies that xU(θn) ≤ 0 with probability one.

Since f(x) increases to ∞ as x increases to ∞, for any given A there exists x̃ such

that

E

[∫ τ(A)

0
f(x− y(t))e−ρtdt

]
> K + E

[∫ τ(A)

0
f(A− y(t))e−ρtdt

]
for x > x̃. (83)

Let U = (θ1, u1, θ2, u2, . . .) be fixed, xU(θi) ≤ 0 for all i > 0, and xU(θn)+un > x̃ with

positive probability for some n > 0. Consider the following strategy Ũ . For 1 ≤ i < n, it

coincides with U . If xU(θn) + un ≤ x̃, it coincides with U also for i ≥ n. In the opposite

case, instead of ordering un at θn, we order only up to the level A, and then wait for

one of the two following events and behave accordingly as specified below. If the new

process xŨ(t) crosses level 0 before the process xU(t) crosses the level x̃, we order at the

time of crossing again up to the level A, and wait for a new moment of crossing. If the

new process xŨ(t) does not cross the level 0 before the process xU(t) crosses at some

moment τ the level x̃, we order at this moment τ up to the level xU(τ +0) and continue

to use U thereafter. It is evident that xŨ(t) = xU(t) for t /∈ [θn, τ ], and on account of

(83) we have Fρ(x, Ũ) ≤ Fρ(x, U). This completes the proof of Lemma 6.
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