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ABSTRACT
Along with gaining popularity of Real-Time Bidding (RTB) based
programmatic advertising, the click farm based invalid tra�c, which
leverages massive real smartphones to carry out large-scale ad fraud
campaigns, is becoming one of the major threats against online
advertisement. In this study, we take an initial step towards the
detection and large-scale measurement of the click farm based in-
valid tra�c. Our study begins with a measurement on the device’s
features using a real-world labeled dataset, which reveals a series
of features distinguishing the fraudulent devices from the benign
ones. Based on these features, we develop E���H�����, a system
for detecting fraudulent devices through ad bid request logs with a
focus on clustering fraudulent devices. E���H����� functions by
1) building a classi�er to distinguish fraudulent and benign devices;
2) clustering devices based on app usage patterns; and 3) relabeling
devices in clusters through majority voting. E���H����� demon-
strates 97% precision and 95% recall on a real-world labeled dataset.
By investigating a super click farm, we reveal several cheating
strategies that are commonly adopted by fraudulent clusters. We
further reduce the overhead of E���H����� and discuss how to
deploy the optimized E���H����� in a real-world system. We are
in partnership with a leading ad veri�cation company to integrate
E���H����� into their industrial platform.
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1 INTRODUCTION
Programmatic advertising (ad) has become the driving force for
the growth of internet advertising in the past decades, which is
bene�ted from the innovation of new ad technologies that bring us
the e�ciency of automatic buying and selling of advertisements.
Real-Time Bidding (RTB), one of the most signi�cant technologies,
provides a digital marketplace, where website owners and mobile
app developers (ad publishers) can sell the spare spaces (ad slots)
on their websites or applications to advertisers through real-time
auctions. Over the past 10 years, mobile in-app advertising has
become the major increasing growth of advertising revenues. It is
reported that the global RTB market size could potentially grow
from $6.6 billion USD in 2019 to $27.2 billion USD by 2024 [33].

Unfortunately, this increased prominence has also attracted the
attention of fraudulent ad slot sellers, who try to in�ate their in-
comes by fabricating ad requests. This task is usually outsourced to
click farm owners, who can control thousands of mobile devices or
emulators and mimic normal app usage patterns to trick advertisers
into believing that their ads have been seen by actual, interested
users. Fig. 1 substantiates an example of a “click farm” reported
by the recent news [26, 32], which leverages massive real smart-
phones to carry out a large-scale ad fraud campaign. Nowadays,
an advertiser usually pays money for every 1,000 impressions of a
given advertisement, instead of clicks, which is commonly known
as Cost Per Mille (CPM) [20]. As a result, those committing frauds
within this system have evolved their technique from “click spam”
into the generation of “invalid tra�c”. It is estimated that every
year trillions of delivered ad impressions are not watched by real
people, leading to losses in the tens of billions of US dollars for
advertisers [12, 42].



(a) Software level emulation (b) Hardware level automation

Figure 1: Automated and coordinated “click farm”.

Due to the substantial �nancial loss caused by invalid ad tra�c,
the problem has attracted increasing attention. However, many
prior works that focus on the problem of click spam detection [13,
14, 40] or authenticated click [15, 21, 36] cannot be applied in the
era of RTB, since the basic pricing model in the RTB system is CPM
rather than traditional CPC (cost-per-click), indicating that fraud-
sters no longer need to click on the ads, which renders detecting
the invalid tra�c more di�cult.

In the industry, tra�c veri�cation is performed by designated
companies/organizations, which are trusted by both ad publishers
and advertisers. By removing the invalid tra�c before the billing
cycles, they help advertisers minimize wrongful payment while
protecting the rights of ad publishers. The key players in this ecosys-
tem include Integral Ad Science (IAS) [3], Oracle [4], and White
Ops [5]. The best practice of combating invalid tra�c adopted by
the mainstream tra�c veri�cation companies heavily relies on rule-
based detection such as blacklists and parameter/metadata checks
(e.g., IP blacklists, location validity checking, user agent (UA) check-
ing). To date, little attention has been paid to the detection and
measurement of large-scale click farms.

Challenges. Detection of click farms faces the following unique
challenges. 1) Attackers have adopted a series of hardware/software
level strategies (e.g., frequently changing the various parameters
including IP, UA, IMEI, emulating the human behavior including the
mobility pattern, and even using the automated tool) to mimic the
human behaviors and generate “seemingly organic” tra�c, which
is di�cult to detect. 2) Due to the noisy ad tra�c data and dynamic
network environment, the detection of invalid tra�c based on any
speci�c fraudulent device is less reliable. 3) In practice, it is expected
to process billions of transactions per day. The amount of data that
needs to be processed makes it challenging to design a practical
detection system with low overhead.

E���H�����. In this study, we present E���H�����, the �rst
work to investigate click farm-oriented invalid tra�c detection
based on the real-world mobile RTB transaction data. E���H�����
handles invalid tra�c via detecting the source of tra�c, i.e., the
fraudulent devices involved in the click farms. E���H����� is moti-
vated by the following observation: although any individual fraudu-
lent device tends to adopt strategies to mimic the organic tra�c, the
attackers behind the click farm have strong incentives to camou-
�age the behaviors of invalid tra�c with certain patterns in order
to lower the cost. Such group features could be used to design a
novel automatic click-farm and fraudulent device detection scheme.

Based on the above insights, we �rst conduct a measurement of
the device’s features using a real-world labeled dataset, which re-
veals a series of features distinguishing the fraudulent devices from

the benign ones. To make use of the features depicted by fraudulent
devices as groups, we further propose a three-stage detection sys-
tem, E���H�����: 1) Stage 1 uses the identi�ed features to build a
classi�er to �ag individual devices; 2) Stage 2 captures cluster-level
features by applying the Top-App based Clustering Algorithm, which
leverages the app usage patterns of the devices to group devices; 3)
Stage 3 aggregates the information produced in the previous stages
and performs majority voting to detect click farms as well as the
fraudulent devices.

Our extensive evaluation shows that E���H����� is able to cap-
ture real-world click farms with high accuracy and with moderate
overhead incurred. We also reveal interesting �ndings surrounding
the detected click farms, which may bene�t future research. We
have reported all of the �ndings to a leading ad veri�cation com-
pany (Company A), which has positively acknowledged our results.
Based on our study, we have contributed a fraud reason code on
click farm detection in Company A’s real-world detection system,
which is expected to help the ad veri�cation industry to identify
large-scale fraudulent device clusters and �lter invalid tra�c.

Contributions.We make the following key contributions:

• New features (Sec. 4). We perform an ad fraud measurement
study on a labeled real-world dataset, which reveals a series of
important characteristics of fraudulent devices.

• New system (Sec. 5). We propose E���H�����, a novel three-
stage fraud detection system for automatically identifying device
clusters and classifying the fraudulent devices in terms of their
cluster-level features based on real-world ad bid logs.

• New �ndings on cheating strategies of click farms (Sec. 7). We
successfully identify a group of large-scale click farms in the
real-world dataset. After focusing on the largest click farm and
tracing back to the historical data in two 10-day datasets in 2018
and 2019, respectively, we discover similar patterns in a large
number of devices. We reveal a series of strategies adopted by
this super click farm to evade detection.

• Optimization and real-world deployment (Sec. 8). We propose sev-
eral optimization mechanisms that greatly reduce the overhead
of E���H�����, and make it practical to be used in the real
world. We evaluate E���H����� on a 1-day unlabeled dataset
containing 53M devices. Our evaluation shows that E���H�����
is able to detect 8M fraudulent devices related to click farms
within 2 hours. The top results are con�rmed by Company A,
and Company A has integrated E���H����� into its real-world
system.

Ethical considerations. Each time a user’s device requests an ad
material, the ad exchange will transmit the request and record it as
a log. The source data in the request is collected by the ad software
development toolkit (SDK) embedded in an app only after the user’s
consent on the app’s privacy agreement. The ad tra�c veri�cation
company routinely collects ad bid request logs from ad exchange
for the purpose of verifying and measuring the quality of the ad
tra�c. The data is kept in the ad tra�c veri�cation company data
center with access being granted only to the authors’ a�liation. We
have obtained approval from the ad tra�c veri�cation company
for accessing the ad bid logs. The data (such as IMEIs) provided by



the ad tra�c veri�cation company does not include any Personal
Identi�able Information (PII).

2 BACKGROUND
In this section, we introduce the system model of programmatic
advertising and then explain the ecosystem of real-time bidding
by showing a typical process of serving an ad in programmatic
advertising and the role of fraudulent publishers. We also discuss
the best practice of invalid tra�c (IVT) veri�cation and �ltering in
the industry.
Ecosystem of programmatic advertisement. Digital advertis-
ing is mainly processed over “programmatic” platforms in an au-
tomatic way, which involves Advertiser, Publisher, Demand Side
Platform (DSP), Supply Side Platform (SSP), and Ad-Exchange. The
Publisher (e.g., developers of mobile apps) reserves space in their
apps as ad slots for displaying advertisements and uses SSPs to
auction their available ad slots. Advertisers use DSPs (e.g., TheTrad-
eDesk and Baidu) to bid on these available ad slots based on how
successful they think those ads will be in attracting the interest
of visitors. Similar to the stock exchange, the Ad-Exchange (e.g.,
Google, MoPub, and Tencent) serves as a digital marketplace, which
allows advertisers and publishers to sell and buy ad slots through
RTB-based auctions. Each ad slot would typically go through many
auctions before beingmatched to the �nal advertiser. These auctions
happen billions of times per day, usually within the milliseconds
before an ad is presented on the end user’s device.

A typical RTB process is illustrated in Fig. 2. When a user opens
up an app and triggers an ad impression (i.e., a click on the ad),
the app sends an ad request to the SSP, which further forwards the
request to the Ad-Exchange. The ad request often contains device
ID, IP address, timestamp, the user’s current location, as well as
other information about the ad slot. Upon receiving the ad request,
the Ad-Exchange initiates an auction of the ad slot and records an
ad bid log in the database. The bidding request is then sent to each
registered DSP in the Ad-Exchange and the DSPs bid on the ad slot
on behalf of the advertisers. As speci�ed by OpenRTB [20], in the
most real-time bidding systems, Cost Per Mille (CPM) is used to
charge advertisers. When the Ad-Exchange initiates an auction, the
DSPs on behalf of advertisers would respond to the optimal price,
in accordance with the rules set by advertisers. The Ad-Exchange
informs the winner, and the corresponding advertisement is then
sent to the user and is displayed on the app.
Ad fraud. Unfortunately, this increased prominence has also at-
tracted the attention of tech-savvy fraudulent publishers, who try
to produce fake tra�c and fraudulent ad inventories to trick ad-
vertisers into believing that their ads are being seen by genuinely
interested users. According to the Invalid Tra�c (IVT) Detection
and Filtration Standards [24], IVT can be caused bymultiple sources.
On the one hand, IVT involves the tra�c identi�ed through routine
means of �ltration, executed through the application of lists, or
with other standardized parameter checks. This type of IVT can
be generated by known invalid data-center tra�c, bots, spiders, or
other crawlers, non-browser agents. On the other hand, some types
of IVT, produced by known automated systems, emulators, custom
automation software and tools, infected and hijacked devices, in-
centivized human activities, and adware/malware that conducts
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Figure 2: The ecosystem of “programmatic” advertising and
the �ows of a typical RTB process. The payment process in-
dexed in 7 is achieved indirectly via the intermediates.

deceptive actions (e.g., ad injection and unauthorized overlays), re-
quire more advanced techniques to analyze and detect, which often
include multi-point corroboration/coordination and a signi�cant
amount of human intervention. In this work, we focus on detecting
the provenance of IVT (i.e., the fraudulent devices), and discover
organized device clusters.
Ad tra�c validation. To defend against ad fraud, the industry
relies on third-party ad tra�c veri�cation services provided by
the ad tra�c veri�cation companies, such as White-Ops, IAS, and
RTBAsia. The tra�c identi�ed as invalid must be deducted from
pro�ts between the publisher and the advertiser as per the Invalid
Tra�c Detection and Filtration Standards [24]. To enhance the
robustness of the detection results, there is a pressing need to com-
pare and cross-check the IVT measurement results across di�erent
measurement organizations. For example, 30 major IVT veri�cation
companies across Asia-Paci�c, including RTBAsia, Baidu, Tencent,
and Toutiao, carry out the project of Distributed Invalid Tra�c
Filter (DIF). This allows di�erent tra�c validators to upload their
own IVT measurements based on billions of daily ad bid request
records and vote if there is any speci�c suspicious device or IP
belonging to the attackers. Therefore, it is desirable to design a
novel third-party tra�c validation approach by monitoring the ad
bid request logs.

3 DATASETS
In this section, we present the format of the ad bid logs, which serve
as the basis of our design of E���H�����. We also introduce the
information of the datasets used in the paper.

3.1 The Format of Ad Bid Logs
Our datasets contain the ad bid logs collected by our industrial
collaborators, which record the ad bid requests in ad exchange plat-
forms. A typical ad bid request contains 10 �elds (see Table 1). The
IP refers to the IP address of the device. The Ad Slot ID represents
the unique identi�er of the ad slot assigned by the ad-exchange
platform. There are three types of Device IDs: IMEI, Android ID,



Table 1: Fields of ad bid logs.

Field Description

IP Source IP
Ad Slot ID A globally unique id of the requested ad slot
IMEI IMEI MD5 value
Android ID Android ID raw/MD5 value
IDFA IDFA MD5 value
OS Operating system of the device
Location Real-time GPS coordinates of the device
Timestamp The time when the request was sent
Bundle ID Bundle ID of the app generating the request
Device Brand The brand of the device
User-Agent (UA) The user agent of the http request

Table 2: Datasets used in this paper; ⇡CA08= and ⇡C4BC are extracted from ⇡2020.

Name Labeled? Devices Log Duration Used in Purpose
F B

⇡2020 Y 2M 0.2M 82M May 6 - June 5, 2020 Sec. 4 Fraudulent devices measurement

⇡CA08= Y 120k 113k 4.3M May 6 - May 15, 2020 Sec. 6 Training of E���H�����

⇡C4BC Y 125k 124k 4.9M May 16 - May 25, 2020 Sec. 6
Sec. 7

E���H����� evaluation
Click farm investigation

⇡2018 N 290M 290M Mar 21 - Mar 30, 2018 Sec. 7 Backtracking the largest click farm;
Cheating strategy investigation

⇡2019 N 63M 63M Mar 6 - Mar 15, 2019

⇡2021 N 53M 117M Jan 13, 2021 Sec. 8 In-the-wild detection & validation

and IDFA. All of them are hashed by MD5. IMEI and Android ID

are used in Android devices while IDFA is for iOS devices. The OS in-
dicates the operating system of the mobile device, either Android or
iOS. The Location represents the device’s geo-location at the time
of ad request generation. The Timestamp refers to the time when
the request is sent. The Bundle ID indicates from what app the ad
request is originated. The Device Brand represents the brand of
the device. The User-Agent (UA) refers to the user agent of the
ad HTTP request. All the �elds, except for IP and Timestamp, are
reported in ad request parameters by the app.

3.2 Overview of Datasets
We use 6 di�erent datasets in this paper, which are described in
Table 2. All the datasets contain ad bid logs generated by mobile
devices during a certain period. Here we brie�y introduce each
dataset, and more details will be provided in later sections where
they are in use.
J2020. ⇡2020 is a labeled dataset containing ad bid request logs
recorded from May 6, 2020, to June 5, 2020. The dataset contains
82 million logs, generated by 2 million fraudulent devices and 0.19
million benign devices. We use it as a ground-truth dataset to �nd
distinct features for fraudulent devices (Sec. 4).
Jtrain andJtest .⇡CA08= and⇡C4BC are extracted from⇡2020. They
serve as a training set and a test set for the evaluation of E����
H����� (Sec. 6). Moreover, ⇡C4BC is used to perform click farm
investigation in Sec. 7.
J2018 and J2019. After identifying a few click farms in ⇡C4BC , we
pick the largest click farm and trace back to two 10-day datasets
in 2018 and 2019 to identify devices that share the same charac-
teristics (Sec. 7). These click farm-related devices in 2018 and 2019
form ⇡2018 and ⇡2019. We use these two datasets to investigate the
general cheating strategies of click farms (Sec. 7).
J2021. To evaluate the practicality to deploy E���H����� in the
real world, we use ⇡2021 as a validation dataset, which contains
1-day’s data without labels in 2021.
Ground-truth labels. In ⇡2020, the fraudulent devices are col-
lected from a distributed blockchain system, where a group of lead-
ing industrial tra�c veri�cation companies work together to report
highly suspicious devices. They identify the suspicious devices with
auxiliary information collected by their own SDKs. Each of these
companies regularly uploads fraudulent device information found
by itself to this blockchain platform for majority voting: one device
is deemed to be fraudulent if more than two members upvote it,

and it will be added to the blacklist. Each blacklisted device will be
blocked by them for several months, until being removed from the
blacklist after a certain time. On the other hand, benign devices are
collected by Company A using some incentives to encourage users
to upload some evidence (e.g., photos of surroundings) to prove that
they are human. These pieces of evidence are examined by Com-
pany A manually to ensure that they are real. Both fraudulent and
benign devices are double-checked by Company A’s commercial
rule-based system, which takes into consideration other aspects of
the devices, such as the account activeness of the device in social me-
dia, the physical trace of the device. We extract the involved ad bid
logs of the fraudulent devices and benign devices as dataset ⇡2020.

4 MEASURING FRAUDULENT DEVICES
Ad bid requests not only record the ad transaction history between
the organic (benign) users but also serve as snapshots of evidence
related to ad fraud. This provides us with the opportunity to capture
the fraudulent devices and screen out the invalid tra�c. In this
section, we �rst use a real-world ad bid log dataset (⇡2020) to study
the features of fraudulent devices. These measurement results serve
as the basis of E���H�����. It is observed that fraudulent devices
exhibit di�erent patterns, e.g., they are likely to adopt more IPs to
generate ad bid requests for one or two ad slots. Herewe take several
examples to show the di�erences between fraudulent devices and
benign devices as shown in Fig. 3.

Statistical Number: # unique IP addresses.
Observation 1: Fraudulent devices bind to more IP addresses.
The numbers of unique IP addresses used by fraudulent devices and
benign devices are shown in Fig. 3a. As seen from Fig. 3a, fraudulent
devices bind to more IPs than benign ones. 67.9% of benign devices
use 1 IP address, and 4.9% of them use more than 10 di�erent IP
addresses. In contrast, 48.0% of fraudulent devices use more than 5
di�erent IP addresses and 3.5% of them correspond to 50 di�erent
IPs. This phenomenon is perhaps due to the extensive usage of
commercial residential IP proxy services, well aligned with the
previous study [25].

Entropy: ad slot IDs.
Observation 2: Fraudulent devices have lower ad slot entropy.
We compare the entropy of ad slot IDs in Fig. 3b. As shown in Fig. 3b,
91.9% of fraudulent devices have an entropy of 0, meaning that they
only had one unique ad slot ID. Intuitively, the fraudulent devices
target the speci�c ad slot ID to make pro�ts. However, benign de-
vices usually request more than one ad slot IDs to enjoy the various



(a) # of unique IPs.
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Figure 3: The comparison of di�erent features between fraudulent devices and benign devices in⇡2020. The lines in Fig. 3b and
Fig. 3c represent kernel density estimations across devices.

services. This leads to an interesting phenomenon that benign users
have a higher value in terms of ad slot entropy. It is observed that
there are 41.9% benign devices with an entropy larger than 0.5, in
contrast to the fraudulent devices with the proportions of 2.2%.

Temporal: active hours.
Observation 3: Fraudulent devices are more active.
We extract the active hours for the devices in both labels. From
Fig. 3c, we can learn that most of the benign devices (99.9%) have
less than 12 active hours per day in the dataset. In contrast, there
are 11.0% of the fraudulent devices being active for more than 15
hours per day in the dataset. Even worse, 1.5% of them are active
for more than 20 hours per day, which is unbelievable for humans.
The potential reason behind this is that the attackers exhibit a high
incentive to generate more invalid tra�c within a speci�c period
to gain more economic revenue.

Inconsistency: # device brand names.
Observation 4: Fraudulent devices use multiple brand names while
benign devices usually use one brand.
The number of device brands is shown in Fig. 3d. More than 95% of
benign devices only used one brand name regardless of the datasets;
only 16.8% used two brand names. However, 16.8% of fraudulent
devices used two brand names; roughly 5.6% of them used more
than 5 brand names. More brands for fraudulent devices may occur
when attackers frequently change the device’s brand in lieu of
device IDs.

Android version.
Observation 5: Fraudulent Android devices run lower OS versions.

As shown in Fig. 3e, we observe that fraudulent devices are in-
stalled on lower Android versions in comparison to benign devices.
9% (resp. 84%) of fraudulent (resp. benign) devices are on Android
8, 9, and 10. 79.7% of fraudulent devices are running Android 4 or
lower, which is not installed by any benign devices in 2020. Hence,
we conclude that fraudulent devices run lower Android versions
than benign devices do. The potential reasons are two-fold: (i) Us-
ing Android phones on lower versions is more cost-e�ective for
attackers to mount a larger scale mobile ad fraud campaign. (ii)
The phones with earlier Android versions are much easier to gain
full access to the root permission, enabling fraudulent tasks such
as auto-clicking with ease. This resonates with the fact that some
mobile phone manufacturers (such as Huawei) ban users from un-
locking the bootloader on high Android version devices, serving as
a requisite for root access acquisition [44].

5 EVILHUNTER
In this section, we present the detailed design and implementation
of E���H�����. The basic insight of E���H����� is contingent on
the cluster-level features rather than any individual device features
to identify the fraudulent devices. The main goal of E���H����� is
to detect malicious device clusters (click farms) besides identifying
fraudulent devices.

In general, E���H����� is comprised of three stages (see Fig. 4).
1) In the classi�cation stage (Stage 1), based on a series of features
discussed in the previous section, E���H����� designs a device
classi�er to distinguish fraudulent devices and benign devices by
exploiting the features extracted from the ad bid logs; 2) In the
clustering stage (Stage 2), E���H����� proposes a Top-App based
Clustering Algorithm, which builds the device graph based on the
connectivity features among devices, and then identi�es the closely
connected device clusters. 3) In the aggregation stage (Stage 3),
we classify each cluster by performing majority voting based on
the device labels within the cluster and then relabel the devices
based on the cluster’s classi�cation result, i.e., all devices inside a
fraudulent cluster will be labeled as fraudulent. The output of E����
H����� is ( [id], label) pairs, indicating which devices are grouped
into clusters and whether these clusters are fraudulent or benign.

5.1 Stage 1: Classi�cation
The device classi�er stage is a general machine learning classi�ca-
tion process. The input is a bunch of ad bid logs while the output
is the predicted score B34E for each device, ranging from 0~1. 0
means a high con�dential benign score of a device and 1 means
a fraudulent one. Device classi�er consists of three components:
Log-Device Mapper, Device Feature Extractor, and Device Score Predictor.
Module 1.1: Log-Device Mapper. Log-Device Mapper constructs the
log-device mapping from the ad bid logs. It then takes the ad bid
logs as input and outputs a device-log mappingM, which maps each
device ID (id) to the corresponding logs generated by this device.
To retrieve the unique id for each device, given an Android device,
Log-Device Mapper uses the combination of the MD5 values of IMEI
and Android ID. Since both IMEI and Android ID may be an empty
value caused by strict permission control enforcement, we use a
combination of them to cover more devices in the ecosystem. On
the other hand, since Apple restricts the tracking for iOS devices:
all iOS apps must have a user’s permission to access their IDFAs
after iOS 14.5 [7], and therefore the detection of invalid tra�c for
iOS devices is beyond the scope of this paper.
Module 1.2: Device Feature Extractor. The Device Feature Extractor
extracts representative features that can re�ect the characteristics
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Figure 4: The work�ow of E���H�����.

Table 3: Features extracted by Device Feature Extractor.
Feature Categories Feature Name

(a) Statistical Features
Number of logs
Number of unique IP addresses
Number of unique ad slot IDs

(b) Entropy Features
Log entropy
IP entropy
Ad slot ID entropy

(c) Spatial-Temporal Features Number of active hours
Maximum speed

(d) Inconsistency Features
Number of brands
Fake brand ratio
Non-browser UA ratio

of fraudulent devices. To achieve this, we de�ned 11 features that
capture the nature of fraudulent devices covering all the �elds of the
ad bid logs (Table 1), and group these features into four categories
(Table 3). These features are extracted as follows.
(a) Statistical features. Device Feature Extractor extracts the statistical
features of a device, including the number of log entries, unique IP
addresses, and unique ad slot IDs. Intuitively, all these numerical
features should be within a certain range, since a normal user
cannot use too many di�erent IP addresses or generate too many
ad requests.
(b) Entropy features. Device Feature Extractor calculates the entropy of
the three features shown in category (b) in Table 3, which measures
the uncertainty of the features: higher entropy indicates higher un-
certainty. Device Feature Extractor adapts the normalized entropy [29]
to compute the features as follows:

[ (- ) = �
=’
8=1

? (G8 ) log2 (? (G8 ))
log2 (# ) , (1)

where G1, . . . , G= are = possible results of a feature - (e.g., IP ad-
dress); ? (G8 ) is the ratio of G8 in all # logs generated by this device.
Device Feature Extractor applies Eqn. 1 on logs, IPs, and ad slot IDs
to compute the normalized entropy for them.1 Note that if # = 1,
[ (- ) = 0.
(c) Spatial-temporal features. Spatial-temporal features are broken
down to a given device’s active hours and the maximum moving
speed. The number of active hours for a device is the total quantity
of hours when there was at least one ad bid request sent during that
hour. To compute the maximum speed, for each device, Device Fea-
ture Extractor uses the location and timestamp �elds to compute
the average speed between every two consecutive ad bid requests

1To compute the normalized entropy of logs, the logs are �rst grouped according to
the hours of occurrence.

in the logs and selects the maximum value. To avoid the in�uence
of default location values, we ignore those values including (0,0)
and high-frequency locations far away from the target area.
(d) Inconsistency features. Inconsistency features aim to capture the
inconsistencies in the logs. The �rst feature in the category (iv) is
the number of device brands for each device. Normally, a device
should only have one brand name. So if a device has too many
brand names, it may be a signal of fraud. However, the brand �elds
of a device may be incorrectly reported by app developers in the
ad request parameter; to address this issue, Device Feature Extractor
extracts another feature, called fake brand ratio, tomeasure the ratio
of fake brands for each device. Device Feature Extractor compares the
brand names with two whitelists obtained online,2 which contain
269 real brand names. If a brand does not appear in any of the two
whitelists, Device Feature Extractor considers it as fake. The third
feature is the non-browser User-Agent ratio. Normally, the UA
�eld in a log re�ects the Browser or Webview information of the
OS running on the device. The UA is either ‘Mozilla’ or ‘Dalvik’.
However, for fraudulent devices, the UA may be forged (e.g., ‘Go-
http-client’), as it is not a real device. Therefore, Device Feature
Extractor uses the non-browser UA ratio as a feature.
Module 1.3: Device Score Predictor. The Device Score Predictor uses
traditional machine learning models to perform the training and
testing on the features. Particularly, any feature-based classi�er (e.g.,
logistic regression, decision tree, kNN, SVM, and neural network)
may potentially be used. However, we note that deep learning is
hard to interpret the semantics (or representation) of the features
extracted by Device Feature Extractor. In summary, the output of
Device Score Predictor is the predicted score B34E for every device.

5.2 Stage 2: Top-App Based Clustering
In Sec. 5.1, we have proposed a novel classi�er to distinguish fraud-
ulent devices from benign ones based on the ad bid logs. However,
in practice, such individual classi�cation results may be a�ected by
the noisy data or the intentional manipulations of the attackers. To
address this problem, in Stage 2, we group the devices into various
clusters and then exploit the cluster-level features to determine
if the clusters and their devices are fraudulent or not. The pro-
posed top-app-based clustering algorithm consists of three steps:
extracting top-app features, constructing device graph structure,
detecting communities within the graph by applying the Louvain
algorithm [8] to cluster devices.

2gsmarena.com and kimovil.com.



Figure 5: A sample device graph constructed by 1,000 fraud-
ulent vertices (in blue) and 1,000 benign vertices (in orange).

Module 2.1: Top-App Extractor. In this step, we aim at extracting
the key features that can represent the synchronicity of the devices.
Here we choose the app usage patterns as the major factor that
we consider, in that the attackers tend to deploy fraudulent de-
vices at a large scale for more revenue. Thus the ad bid requests
generated by those fraudulent devices are primarily for the target
app. Furthermore, the attackers have to control a huge number of
devices automatically, which leads to a similar app usage pattern
for those controlled devices. Speci�cally, the usage pattern*%34E
for a device is formulated as:

*%34E =< 5 A4@(0??1), . . . , 5 A4@(0??=) >, (2)

where 5 A4@(0??8 ) denotes the frequency of using 0??8 in one day.
However, there are thousands of apps in the whole ad ecosys-

tem. Such a feature vector with thousands of elements greatly
hinders computation. To reduce the computation complexity, we
only keep the values of 5 A4@(0??8 ) for the top [ apps in*%34E . We
will discuss the detailed parameter selection process in Sec. 6.1 and
Appendix A.
Module 2.2:DeviceGraphConstructor.To construct a device graph
using the above features, we de�ne the similarity between a device
pair using the cosine similarity as the following:

(8<(34E1,34E2) = *%34E1 ·*%34E2
k*%34E1k · k*%34E2k

(3)

Then for each node (device) pair, we add an edge between them
and use the similarity as the weight of the edge. To avoid con-
structing weighted graphs with massive low-weight edges, we set
a threshold (8<C⌘A and only add edges between two devices when
(8<(34E1,34E2) � (8<C⌘A .
Module 2.3: Community Detector.An example of the device graph
is depicted in Fig. 5. A key observation is that the densely connected
clusters are mostly composed of vertices with one type, i.e., either
with all fraudulent ones or benign ones. Here we use the popular
Louvain method [8, 46] to identify communities in the device graph.

5.3 Stage 3: Aggregation
We aggregate the results of the two stages before Stage 3 via Label
Voting and Device Relabeling.

Module 3.1: Label Voting. First, we use majority voting on the
labels obtained from Stage 1 to determine whether the clusters
in Stage 2 are fraudulent or benign. Speci�cally, we compute the
average predicted score of the devices for each cluster as the score
for the cluster (B2 ). If B2 � BC⌘A , we label the device cluster as
fraudulent. Otherwise, the device cluster is benign. Here we only
consider the clusters that are composed of more than U# , N is
the total number of devices. For example, when U = 0.1, we only
consider clusters that have more than 0.1# devices for label voting.
Module 3.2: Device Relabeling. A signi�cant advantage of Stage
2 is the capability to calibrate the devices labeling taking place in
Stage 1. As mentioned in Sec. 5.2, the fraudulent devices may be
falsely predicted as benign ones due to the di�erent con�gurations
of the attackers. Thus, for each cluster of size greater than U# , we
use the label of this cluster after majority voting to relabel each of
its devices.

5.4 Implementation
We implement E���H����� on a local server equipped with 6
CPU cores, 64 GB memory, and 10 TB SSD, running Windows
10. In Stage 1, the Log-Device Mapper and Device Feature Extractor
are implemented using the Scala programming language on the
Apache Spark framework. The Device Score Predictor is implemented
using Python. In Device Score Predictor, during pre-processing, the
features in categories (i), (iii), and (iv) are normalized using the
RobustScaler in the Scikit-learn package to avoid being stretched
by some outliers. We implement 5 classi�ers, including Gradient
Boosting Decision Tree (GBDT), Multi-Layer Perceptron (MLP),
:-nearest neighbors (kNN), Support Vector Machine (SVM), and
Logistic Regression (LR). For GBDT, we use LightGBM [22]. We set
20 as the number of early stopping rounds, and enable positive and
negative bagging with a bagging frequency of 3. For MLP, we use
one hidden layer with 100 neurons. For kNN, the : is set to 15. For
SVM, we use LibSVM [9]. For LR, we use the default settings in the
scikit-learn package [31]. In Stages II and III, we implement all the
components via scala on Spark.

6 EVALUATION
In this section, we describe the parameter settings and evaluation
results. Speci�cally, for the stage 1 classi�er, we evaluate the detec-
tion performance by cross-validation. Secondly, we compare the
detection results of E���H����� with those of Stage 1 alone, to
show the performance improvement introduced by Stages II and III.

6.1 Parameter Settings
Table 4 lists all the parameters we use in the system design. To
choose the best settings which balance detection accuracy and
the computational cost, we start from an initial parameter setting.
We then compare the results after tuning each of the parameters.
Speci�cally, we use ⇡CA08= as the training set to train E���H�����
using di�erent parameter settings and use the �rst day of⇡C4BC (30k
fraudulent devices and 30k benign devices) as the test set to evaluate
the performance. The initial parameter settings are ([ = 5, (8<C⌘A =
0.5, BC⌘A = 0.5,U = 10�4). The evaluation is detailed in Appendix A.
Based on our evaluation, we choose the optimal parameter settings
([ = 5, (8<C⌘A = 0.5, BC⌘A = 0.3,U = 10�3) in our paper.



Table 4: The parameters in E���H�����.
Parameter Explanation

[ The number of top apps considered in*%34E
(8<C⌘A The minimum similarity to add an edge between two nodes
BC⌘A The minimum score of labeling a cluster fraudulent
U The minimum size of a cluster = U# , N is the total device number

Table 5: Cross-validation results acrossmodels: mean values
and standard deviations (in parentheses).

Model Accuracy Precision Recall F-score

LightGBM 0.9501 (0.0004) 0.9599 (0.0010) 0.9395 (0.0008) 0.9496 (0.0004)
MLP 0.9496 (0.0006) 0.9603 (0.0015) 0.9379 (0.0019) 0.9490 (0.0005)
kNN 0.9426 (0.0008) 0.9839 (0.0006) 0.9000 (0.0016) 0.9401 (0.0008)
SVM 0.9499 (0.0005) 0.9594 (0.0012) 0.9393 (0.0014) 0.9492 (0.0004)
LR 0.9465 (0.0007) 0.9623 (0.0010) 0.9294 (0.0015) 0.9456 (0.0005)

6.2 Evaluation Results
Dataset. To evaluate the e�ectiveness of E���H�����, we ran-
domly select 30k fraudulent devices and 30k benign devices each
day from May 6 to May 15, 2020, from ⇡2020 as our training dataset
⇡CA08= . After merging the devices with the same IDs, we have
120k/112k unique fraudulent/benign devices. This dataset (⇡CA08=)
serves as a balanced training dataset for the classi�er in Stage 1.
Using the same method, we obtain 125k/124k unique fraudulent/be-
nign devices from May 16 to May 25, 2020, as our test set ⇡C4BC .
Results of Stage 1.We apply the 5 classi�ers as the Device Score Pre-
dictor on our dataset to classify the fraudulent devices based on the
logs. We follow 5-fold cross-validation. The mean and one standard
deviation of the 5-fold test for accuracy, precision, recall, and F score
are presented in Table 5. All 5 classi�ers achieve over 94% Accuracy,
with a Precision rate in excess of 95%. The best model, LightGBM,
achieves 95.01% Accuracy, 95.99% Precision, and 93.95% Recall. The
classi�cation results have very small variances. We �nd that there
are approximately 3% false positives during the test. The main
reason for these false positives is that their statistical features and
entropy features are similar to those of fraudulent ones. The users of
these devices are probably stimulated by the apps such that they fre-
quently browse or click on the ad contents. The quickly generated
ad bid logs of such devices are mostly targeted to the apps where
users can earn money by reading news, watching videos, or even
viewing ads. As discussed in Sec. 5.2, false negatives in this stage
are mainly caused by intentional manipulations of the attackers.

To con�rm that the four sets of features are indeed useful for the
classi�cation task, we start by using features in the �rst category
presented in Table 3 for classi�cation and adding other feature sets
one by one. We use the LightGBM model for classi�cation, and plot
the ROC curves for the 4 cases in Fig. 6. As can be seen from Fig. 6,
the AUC values keep increasing when more feature sets are used,
indicating that all features are e�ective for the classi�cation task.
Necessity of Stage 2 and Stage 3. To show that it is bene�cial to
include Stages II and III in the system, we perform an experiment
on ⇡C4BC , using 3-stage E���H����� and State I alone, respectively.
Fig. 7 shows the Precision and Recall. It is observed that compared
to using State I alone, both Precision and Recall have increasedwhen
using 3-stage E���H�����. Meanwhile, the decrease in Precision
is relatively small. This demonstrates that the proposed 3-stage
mechanism is more e�ective and robust in detecting real-world

Figure 6: ROC curves; [X,Y] means categories X and Y are
used for classi�cation.

Figure 7: Precision and Recall comparison.

fraudulent devices compared to traditional classi�ers. Moreover,
as shown in the next section, Stages II and III are important in
detecting click farms.

7 CLICK FARM INVESTIGATION
In this section, we give a detailed analysis of the identi�ed click
farms (or fraudulent clusters) from ⇡C4BC . By selecting the largest
click farm and tracing back to datasets in 2018 (⇡2018) and 2019
(⇡2019), we perform an in-depth measurement on the click farm.
We introduce our �ndings and observations, which can help us
have a better understanding of how the click farms perform a large-
scale and synchronized fraudulent campaign. It will also bene�t
the community on click farm detection and invalid tra�c �ltering.

We apply E���H����� to the �rst day of ⇡C4BC (May 16, 2020) to
identify the click farms, which contains 30k fraudulent devices and
30k benign devices. After the 3-stage process, 176 out of a total of
1069 clusters (with more than 5 devices) are �agged as fraudulent
ones. Among 131 clusters consisting of more than 50 devices, 38
clusters are detected as fraudulent.
The largest click farm.We take the largest click farm as an exam-
ple to show the �ndings on the fraudulent device clusters, which
contains 11,910 devices and 11,910 logs (1 log per device). It is im-
portant to point out that many characteristics are not limited to
this largest click farm; they also widely exist in other click farms.

7.1 Cheating Strategy 1: Using IP Proxies
It is observed that IP proxy is a widely adopted strategy for the
attacker to avoid detection. However, though the attackers can
dynamically change the IP address, they may fail to change their
geo-location information in some cases. This leads to our two �nd-
ings: 1) Ad bid logs are located in a small region; 2) GPS and IP
geolocations are inconsistent.

Finding 1: The ad bid logs are located in a small region.



Table 6: Statistics of ⇡2018 and ⇡2019.
Field ⇡2018 ⇡2019

Date Mar 21-Mar 30, 2018 Mar 6-Mar 15, 2019
Log 289,912,853 63,743,968
IMEI 289,850,470 61,113,865
Android ID 100,001 62,774,356
APP 22 9
IP 778,023 249,494
IP subset 8,615 37,834
Location 42 33
Device brand 15 338
Device model 239 1817

There are 1349 devices in this click farm which created 1349
ad bid logs. We �nd that the GPS coordinates of these ad bid logs
can be dramatically gathered into a small area with a 1km radius
centered at (xx.64761757174743, xxx.56548085076258). Although
the Location entry may be forged by tech-savvy attackers, there
is no motivation for them to manually set the coordinate to such a
speci�c area. Thus, we speculate that the fraudulent devices in the
click farm are physically located there. This o�ers us a chance to
trace back and measure the historical activities of this click farm.
⇡2018 and ⇡2019.We obtain two datasets spanning over 10 days in
2018 and 2019 respectively, and identify the devices and logs whose
GPS coordinates are associated with this speci�c region. The two
datasets are described in Table 6. We denote the two datasets as
⇡2018 and ⇡2019. The two datasets are used throughout this section.

Finding 2: GPS and IP geolocations are inconsistent.

Based on Finding 1, we further compare the GPS coordinates
with the IP geo-localization of the devices in this click farm. We
check the distances between the GPS coordinates (LOC) recorded
in the logs and the locations corresponding to the IPs (LOCIP)
recorded in the logs. First, we use a commercial IP-location query
API [6] to fetch the GPS coordinates of the IPs LOCIP for each
log. Then, we compute the distance between LOC and LOCIP for
each log. The distance distributions of the fraudulent cluster and a
benign cluster are shown in Fig. 8. It is clear that there is a huge gap
between benign clusters and fraudulent clusters in terms of distance
distributions. In the benign clusters, the distances between GPS
coordinates and IP locations are less than 40 km. On the contrary,
over 75% of logs in the click farms have a distance greater than 400
km. This �nding will bene�t the ad tra�c veri�cation industry by
exploiting this feature to identify fraudulent devices.

7.2 Cheating Strategy 2: Rotating IPs and
Forging Device IDs

IP/ID �ltering is a widely adopted approach in the ad veri�cation
industry. Changing IP/ID is a widely adopted strategy by attackers
to bypass the detection since tra�c veri�cation third parties will
pay more attention to the IPs with in�ated tra�c.

Finding 3: There is a sophisticated strategy of rotating IP addresses
and forging device IDs.

IP also serves as a physical �ngerprint of devices in many fraud
detection methods [29]. Unlike isolated fraudulent devices heavily
relying on IP proxies to change IP, the devices in click farms choose
a more sophisticated strategy to prevent their invalid tra�c from
being identi�ed.

Figure 8: Distance CDF between LOC and LOCIP for a benign
cluster and the cluster of case study.

       
         

                  
           

                      
          

                 
         

     
     

     
 

             

            

ANDROID_VER_CODE = ["4.4.2", "5.0.1", "5.1.1", "6.0", "7.0", "7.1.1"]
DEV_BRAND = ["OPPO", "MST", "CUI", "SAMSUNG", "YUS", "ZTE", "HTC", "UMESI",

"DAXIAN", "XIAOMI", "VIVO", "YTSP", "MEIZHU", "HUAWEI"]
DEV_TYPE = ["M56", "PLUS5", "Y11", "L1", "M7", "N9", "325p", "MS16", "PLUS 6",

"F10", "N11", "NOTE 3", "8US", "TUIP95", "MTS 6", "S672", "P8"]
BUILD_CODE = ["KTU84P", "JOP40D", "LMY47X", "LMY48B", "JZO54K", "JDQ39",

"KOT49H", "LRX21V", "JLS36C"]
UA = f"Mozilla/5.0 (Linux; Android {ANDROID_VER_CODE[randint() % 6]}; " \

f"{DEV_BRAND[randint() % 14]} {DEV_TYPE[randint() % 17]} " \
f"Build/{BUILD_CODE[randint() % 9]}) " \
f"AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/30.0.0.0 " \
f"Mobile Safari/537.36"

Figure 9: User-Agent generation code. The Chrome WebView
version (in red box) is a�xed value while other variant�elds
(red lines above) can be generated arbitrarily.

The �rst strategy is to in�ate the IP numbers by randomly chang-
ing the IP addresses within the subnet. Speci�cally, both ⇡2018 and
⇡2019 are associated with a large number of di�erent IP addresses.
However, when zooming in these IP addresses, it is observed that
these massive numbers of IP addresses belong to a limited num-
ber of subnets. For example, for ⇡2018, it contains 778,023 di�erent
IPs, corresponding to only 8,615 subnets, indicating that each sub-
net contributed to roughly 100 IPs on average. For ⇡2019, there are
249,494 IPs belonging to 37,834 subsets, showing that the IP ad-
dresses were scattered across subnets to bypass tra�c veri�cation.
However, frequently changing IP will make it highly suspicious
for the generated tra�c as well as the corresponding device IDs.
This motivates the click farm to adopt the second strategy: forging
enormous device IDs to reduce the average IP number per device ID.
It is observed that the average IP number per device ID in ⇡2018 is
less than 1. We also observe that massive devices within the click
farm only generate a single ad bid request. The combination of the
two strategies helps the attackers evade tra�c blocking based on
IPs and device IDs.

The aforementioned discussion also largely demonstrates the
vast IP resources available to the click farm operators. Furthermore,
we note that it is unreliable to verify the invalid tra�c exclusively
based on IP distributions as recommended by the recent work [29].

Finding 4: The Android IDs have a common pre�x.

As discussed before, changing Android IDs is also a strategy
widely adopted by the click farm. This is because: (i) any Android
ID with too many ad bid logs is generally believed to be suspicious;
(ii) changing Android IDs can make the blocking list based invalid
tra�c �ltering approach fail to work. This strategy has also been
applied to the identi�ed click farm cluster, which involves 100, 001
Android IDs in ⇡2018.



Mozilla/5.0 (Linux; Android 7.1.1; SAMSUNG 8US Build/LRX21V) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/30.0.0.0 Mobile Safari/537.36

* ** * * * *

Figure 10: An example of the UA generated by this click farm.

Surprisingly, we �nd that in 2018, 100,000 out of 100,001 Android
IDs show a common pattern: they are the MD5 values of a determi-
nate string B = B1kB2, where B1 = “ad4b0d3f5fd” and B2 =“00000”,. . . ,
“99999”; the only exception is IDx = “ad4b0d3f5fdacd9b”. It is de-
rived that IDx is the Android ID of a real device, and all other
Android IDs were created by changing the last 5 digits of it and
computing the MD5 values. We con�rmed this by looking into the
locations recorded in the logs, which showed that these devices
were in close proximity to each other. After discussing with Com-
pany A, one possible explanation is that the attackers intentionally
used this unique Android ID pre�x in 2018 as a piece of evidence to
request payment from the fraudulent publisher who endorses them
to launch the ad fraud campaign. However, in 2019, the Android
IDs did not exhibit such a pattern, indicating that the strategies
adopted by the attackers have evolved.

7.3 Cheating Strategy 3: Forging User Agents
User-Agent also includes much critical end-device system informa-
tion (e.g., Android version, device brand, build code, browser kernel
version), which can be exploited to �ngerprint the fraudulent de-
vices. This observation drives the click farm devices to generate fake
UA �elds to conceal their real system information through modi-
fying system con�guration �les, “/system/build.prop” [43], and
thus bypass the detection. As the �rst step towards understanding
how to generate the fake UAs, we try to simulate fake User-Agent
generation in Python to enumerate all possible combinations of
UAs, as shown in Fig. 9. The attackers select items from prede�ned
small sets for the 4 �elds (Android version, device brand, device
type, and build code [2]) to conceal their critical system information
and avoid being blocked.

Finding 5: 3 types of UA fraud are identi�ed.

We then perform a comprehensive analysis of the UA �elds of
fraudulent devices in ⇡2018 and ⇡2019. We have detected the follow-
ing three UA frauds due to inconsistencies of the �elds, which can
help us combat fraudulent devices in the future. In the following,
we use a real-world UA as an example, which was generated at
2:22:50 AM on March 23, 2018. As shown in Fig. 10, the Android
version is 7.1.1, the device brand is “SAMSUNG”, the device type is
“8US”, and the build code is “LRX21V”.
1) Chrome WebView vs. Android version. Chrome WebView is an
embedded edition of Chrome browser as a non-degradable system
component in each version of the Android system. The version
(30.0.0.0) was born with Android 4.4 [1] and the updated WebView
shipped with Android 4.4.3 has version number 33.0.0.0. It is indi-
cated in [1] that WebView will auto-update for mobile devices with
Android L (Android 5.0) and above. In other words, a new Android
version with an old Chrome WebView version is highly suspicious.
This serves as a strong indicator to identify the fraudulent devices
by checking the inconsistency of UA and Android versions. In the
example of click farm UA, Android 7.1.1 corresponds to WebView

(a) 2018 (b) 2019
Figure 11: Log number proportions of the apps in 2018 and
2019. For each day, the height of the dashed lines separated
by di�erent colors represents the log numbers belonging to
di�erent apps. There are no overlapping apps between two
years.

version 52.0.2743.100, which is inconsistent with the old WebView
version 30.0.0.0 (Fig. 10).
2) Device brand vs. device type. The second observation is that the
device brand and type �elds in the click farm UAs are randomly
generated, which leads to non-existent device brand/type pairs,
such as “SAMSUNG 8US” in the example click farm UA showed in
Fig. 10. Importantly, we ascertain that, in the identi�ed click farms,
most of the UA �elds are evidenced to be forged, such as “HTC
M56”, “DAXIAN Y11”, “UMESI 325p”.
3) Android version vs. build code. Android version and build code
are in a one-to-many relationship, which can be used to check
the forged UAs. In the UA example above, “LRX21V” is the build
code for “android-5.0.0_r7” according to the list [2], which falsely
combines with the Android version of 7.1.1.

In summary, UA provides a plethora of useful information to
determine the nature of a device to be either benign or fraudulent.

7.4 Cheating Strategy 4: Rotating Apps
To avoid massive ad bid requests targeting only one app and being
banned by the ad platform, the fraudsters have developed dozens
of apps and dynamically changed the apps to run the ad campaign,
which will provide economic incentives for the fraudsters.

Finding 6: The apps are uniformly rotated after 3⇠4 days.
We investigate the proportion of log numbers for 18 apps in-

volved (9 selected apps in 2018 and all the 9 apps in 2019) and plot
their transition �ows, which are shown in Fig. 11a and Fig. 11b.
It is observed that click farms do not generate invalid tra�c for
a �xed app. Instead, ad spam campaigns have been intentionally
launched on di�erent apps from one to another. It regularly takes a
certain period to run the ad spam campaign (or rotating period) for
each app. Averagely, the length of the period is about 3⇠5 days. For
example, 2 apps were activated on March 21, 2018, and deactivated
3 days later, meanwhile, 3 new apps were activated on March 23,
2018. The remaining 13 apps in 2018 and all the 9 apps in 2019
show the same characteristics. We checked the Android app market



and, interestingly, all of these apps were developed by the common
developer. After our manual check, all of these apps do not have
any special or practical functionality. It is reasonable to assume that
the only purpose of these apps is to run the ad spam campaign. This
is also supported by another fact that these apps have not received
any updates since being published on the market.

We also apply E���H����� to the full datasets containing ⇡2018,
to investigate how invalid tra�c impacts top 50 apps in the 10-day
dataset of 2018 (Appendix C).

8 REAL-WORLD DEPLOYMENT
In this section, we will discuss how to implement E���H����� in
real-world applications. As we mentioned in the introduction, in
the industry, the major challenge comes from how to address the
massive data (e.g., over 50M devices and 100M logs per day) in a
reasonable period (e.g., less than 1 day for daily clearance). We pro-
pose several techniques to speed up the execution of E���H�����,
in order to support the veri�cation of billions of ad bid requests in
an industrial environment. After applying optimization, we apply
E���H����� to an in-the-wild dataset ⇡2021 and compare the result
with state-of-the-art industry methods. The acknowledgments from
our industrial collaborator show that E���H����� can complement
existing industry methods, and is practical to be used in real-world
scenarios.

8.1 System Optimization
In the tra�c veri�cation industry, it is required to process and detect
invalid tra�c on a daily basis. Thus, the time cost of processing
daily data should be within several hours. In the implementation of
Stage 2, a naive method is to compute similarities between each pair
of devices and then construct a complete graph. However, such a
pair-wise comparison su�ers from the scalability issue. Considering
hundreds of millions of active devices in the advertising system
every day, if we are going to apply the naive method, we need to
perform$ (1015) computation to construct the whole graph, which
is unacceptable in practice.

8.1.1 Optimization techniques. In the following, we propose
three optimization techniques corresponding to the three steps in
stage 2 to address the computation challenges.
1) Merging devices. In Module 2.1 Top-App Extractor, since all devices
are represented by their top-app features, we can naturally put the
focus on distinct features instead of distinct devices. It is observed
that in ⇡2020, only a very small proportion of devices (0.25%) have
di�erent labels but share the same top-app features. Meanwhile,
the number of distinct features is much smaller than the number
of devices (<0.5%). To utilize this characteristic, we merge devices
with the same feature into a single vertex.

For example, suppose two devices id=bed4f2... and id=beed4c...
have the same top-app features: {0e16f25bd0 : 1} (i.e., one ad bid log
for app id e16f25bd); then we combine the two devices and other
devices with the same feature as one single vertex, indexed by a
unique vertex id. In this way, the vertex number in our graph is
signi�cantly reduced, while it does not impact the correctness of
the �nal result. As in ⇡2021, there are 53M devices, which can be
merged into 0.25M vertices. The compression rate is over 200x. The

Figure 12: The CDF of pair-wise device similarities.

pairwise similarity computational time complexity can be decreased
from $ (1015) to $ (1010).
2) Pruning in similarity computation. While merging devices can
decrease the number of vertices to compute, we also �nd in Module
2.2 Device Graph Constructor that many pair-wise similarity com-
putations are not necessary. Since we only build edges between
vertices with high similarities (� 0.5), we can omit many similarity
computations if the estimated similarity is small (i.e., < 0.5). Recall
that we use cosine similarity in our computation. If two vertices
have di�erent top-1 apps, then the cosine similarity is very likely
to be lower than 0.5. In that case, it is unnecessary to compute the
similarity, since it is too small to add an edge between them.

Fig. 12 shows the distribution of similarities between randomly
sampled 10,000 device pairs, half of which have di�erent top-1 apps
while the other half have identical top-1 apps. The curve in orange
shows that there are over 94% of the vertex pairs with di�erent
top-1 apps whose similarities are less than 0.5. The computation
of such similarities is unnecessary for the subsequent steps. Thus,
we only perform similarity computations between two vertices if
they share the same top-1 app. In practice, this pruning method
can eliminate over 99.7% of the operation each day. Note that this
pruning process may in�uence the detection results since it will
result in di�erent device graphs.
3) Dividing graphs for parallel computing. Unfortunately, the com-
plexity of the community detection algorithm (Louvain method) in
Module 3.1 Community Detector is $ (=;>62=), which is not e�cient
enough for large-scale applications. Therefore, we need to �nd
ways to speed up the computation. The input of Community Detector
is all the vertices and edges. It is observed that in a large graph,
the results of disconnected sub-graphs do not in�uence each other.
We make use of this and divide the problem into sub-problems,
and solve them in parallel to increase e�ciency. After pruning in
similarity computation, the result is a collection of graphs. First, we
separate the graphs into groups that have the same top-1 app: each
group contains multiple graphs, and all the nodes in graphs of the
same group have the same top-1 app. Then, we process the groups
in parallel, since there is no dependency among them. Finally, we
collect the community detection results from all the groups. This
helps us to reduce the processing time from over 48 hours to 40
minutes in daily data processing.

8.1.2 Evaluation after optimization. We study how the opti-
mization improves the performance of E���H�����, and how it
impacts the correctness of E���H�����.



1) Performance improvement. We evaluate the performance of E����
H����� prior to and post-optimization using ⇡2021, which con-
tains 1-day data (53M devices and 117M logs) in 2021. Stage 1 takes
roughly 10 minutes; Stage 3 takes 30 seconds. For Stage 2, Module
2.1 Top-App Extractor takes 4 minutes. For Module 2.2 Device Graph
Constructor and Module 2.3 Community Detector, before optimiza-
tion, each of them cannot terminate within 48 hours, respectively;
after optimization, they are able to produce results after 48 minutes
and 40 minutes, respectively. Therefore, E���H����� can process
1-day’s data within 2 hours after optimization, which meets the
practical requirement for daily execution. The performance speedup
is more than 28x.

2) Correctness.We also evaluate the potential impact of the optimiza-
tion with regard to correctness. We randomly select 1,000 vertices
(including 21,191 devices) from ⇡2021 and apply E���H����� prior
to and post-optimization. The �nal detection results show that
there are only 48 devices (0.22%) with di�erent labels. Therefore,
the optimization steps increase the system e�ciency by more than
28x, while incurring little loss (0.22%) on the potential correctness,
which is acceptable.

8.2 Result Validation
By following the IVT Detection and Filtration Standard [24], indus-
try leaders develop their own detection systems to detect several
known types of invalid tra�c. The di�erent types of invalid tra�c
are labeled by di�erent fraud reason codes. To date, there is no spe-
ci�c fraud reason code for detecting click farms, which is the major
advantage of E���H�����. We deploy E���H����� on 1-day’s real-
world ad tra�c data in order to test the practicality of E���H�����.

Dataset. We use the ad bid logs in one day (Jan 13, 2021) collected
from the real world as our dataset ⇡2021. This dataset contains 53M
devices and 117M logs in total.

Results. E���H����� detects around 8 million (15%) fraudulent
devices out of totally 53 million active devices in ⇡2021. These
devices generate 37 million (31%) fake bid requests. After Stage 3,
there are 23,604 clusters, wherein 5,164 clusters have more than 50
devices, and 491 of them are fraudulent clusters.

Comparison with the detection results of Company A. Since
there is no existing industrial system targeting click farm detec-
tion, here we use the detection result of the industrial system of
Company A, to compare and analyze our result. We �nd that 93%
of the detected invalid tra�c by E���H����� is not detected by
Company A’s existing detection system. This undetected invalid
tra�c is originated from click farms. We have manually checked
the top 30 click farms containing 5,941,433 devices in total, which
contribute to more than 74% of the detected fraudulent devices.
We �nd similar cheating strategies from them as revealed in Sec. 7.
Among the 30 click farms, there are 9 click farms that only use IPs
from small centralized areas, which contain 329,287 devices (5.5%)
in total; there are 14 click farms (3,434,208 devices, 57.8%) rotating
IPs and device IDs to evade IP/ID �ltering. Note that there are 4 click
farms (299,186 devices, 5.0%) that use both two strategies. These
19 click farms are con�rmed by Company A, who has adopted our
proposed algorithm as a new fraud reason code in their platform.

We also investigate the other 11 detected fraudulent device clus-
ters. Among them, there are potentially 5 falsely detected clusters:
1) 4 of them contain only Android TV devices, which exhibit di�er-
ent behaviors from Android phones; 2) another cluster has di�erent
UA �elds compared to the normal ones. These UAs are from true
Android devices but start with speci�c values (e.g., bundle ID) in-
stead of Mozilla or Dalvik. So they are �agged by E���H�����.
There remain 6 detected device clusters whose cheating patterns
are not so obvious. They are expected to be double-checked by
Company A using auxiliary information.
Consensuswith other companies. In addition, we have reported
the device IDs and IPs of the detected click farms to the blockchain-
based consensus system. They are expected to be cross-checked by
other companies in the future.

9 DISCUSSION
E���H����� update. To deploy E���H����� and ensure that it
captures state-of-the-art ad fraud, we need to periodically collect
new ground truth data and retrain the Stage 1 classi�er of E����
H�����. This can be achieved by integrating E���H����� with an
active learning approach. For example, we can periodically collect
the prediction results of new devices and reuse them with two op-
tions: 1) For the devices with high prediction con�dence, we can
directly use them as the training dataset to retrain the classi�ca-
tion model. 2) For the other devices with low con�dence, we can
manually label the devices using auxiliary information or other
existing tools. We show a simpli�ed update process using ⇡2020
in Appendix B to demonstrate the practicality and e�ectiveness of
updating E���H����� per week.
Impact of privacy regulations. To enhance privacy and adhere
to General Data Protection Regulation (GDPR), more �elds of the
ad transaction data are expected to be encrypted or removed, ren-
dering the tra�c veri�cation to be more challenging due to a lack
of necessary data. However, we argue that completely removing
all �elds of the ad data is less likely to happen in the near future
because it challenges the current user pro�le based Internet ad
ecosystem. Therefore, it is desirable to have a more strict data au-
thorization and access control and limit the data to a small number
of highly quali�ed tra�c veri�cation companies and their trusted
research partners. We also attempt to investigate di�erentially pri-
vate programmatic ad auctions and this deserves separate research.
Open-source datasets. We are in the process of negotiation with
our industrial collaborator to release the datasets used in the paper.
Once approved, we will release the ad bid logs of fraudulent devices
to facilitate future research.
Limitations. E���H����� shows a good performance in detect-
ing fraudulent devices generating invalid tra�c, but E���H�����
mainly focuses on performing the tra�c analysis towards the ad
bid network; there might exist approaches that can perfectly mimic
the tra�c originating from the benign devices, which can be used
to evade our detection. However, in order to create such “perfect”
invalid tra�c, the attackers need to invest a signi�cant amount of
resources to make all features undetectable, which makes it hard
to make a pro�t. It is important to note that the e�ectiveness of
E���H����� can be further improved if we combine it with other



ad fraud mitigation techniques, such as tra�c authentication, hon-
eypots, and dynamic fraud testing.

Additionally, E���H����� can only be used to detect fraudulent
Android devices. Detecting fraudulent devices running iOS is hard
for two reasons: 1) Apple has restricted the IDFA permission since
iOS 14, which makes it harder to uniquely trace an iOS device in
the ad ecosystem; 2) the invalid tra�c samples originated from iOS
devices are relatively small, due to the di�culty of jail-breaking
and hijacking iOS devices. We leave a thorough study of invalid
tra�c from iOS devices as our future work.

10 RELATEDWORK
Ad fraud measurement and detection. Over the past few years,
click spam has been extensively studied in the context of web adver-
tising, mobile advertising, and search advertising. The research [30]
proposed the characterization of one of the largest click fraud bot-
nets. Researchers also proposed several types of design and analysis
of click spam threats [10, 11, 16, 39, 41]. To defend against click
spam, many approaches have been proposed to avoid or detect click
spam in advertising [13, 14, 17, 27, 38, 40, 45]. Springborn et al. [37]
leveraged tra�c collected from honeypot websites to identify and
analyze a new type of ad fraud, called pay-per-view (PPV) networks.
They examined the click spam issue as well. However, we high-
light that the industry focus, driven by advertising monetization,
has been shifted from click spamming to invalid tra�c-enabled
coordinated attacks.

To the best of our knowledge, there is only one recent study inves-
tigating invalid tra�c [29]. The researchers designed a con�dence
score for each domain, based on the IP entropy. The con�dence
score o�ered for each app domain is useful for DSP to determine
how to treat the upcoming bid requests. However, this method
cannot ascertain what session of ad tra�c is invalid; neither can
be used to measure the ad tra�c at a �ner granularity. Instead, the
methodology developed in this paper is able to identify the sources
of invalid tra�c (i.e., fraudulent devices).
System-level ad fraud prevention. Some researchers proposed
authentication-based methods to eliminate fraudulent activities in
advertising. For example, Juels et al. [21] proposed an authentication
method to validate benign users. In [15] and [36], researchers used
HMAC-based signatures to check ad click fraud. Li et al. [23] used
TrustZone to verify ad clicks and display. However, these solutions
rely on the client side’s ability to detect anomalies and thus have
reduced scalability.

To prevent various types of counterfeit inventories across the
advertising ecosystem, by boosting transparency in the supply
chain, Interactive Advertising Bureau (IAB) Tech Lab launched the
authorized digital sellers (ads.txt) project [18]. The project is aimed
at publishers and distributors to declare who is authorized to sell
their inventory. Furthermore, there are several extended versions
of ads.txt, including app-ads.txt [19] and ads.cert [20] to extend
to more scenarios. Recently, Pastor et al. [28] proposed another
extended version, called ads.chain, to resolve the limitations of the
previous protocols. However, all of those solutions are designed to
increase the transparency in the ecosystem, which is orthogonal to
invalid tra�c detection proposed in this paper.

11 CONCLUSION
In this paper, we �rst conduct a measurement study on a labeled
ad fraud dataset to distinguish the nature of mobile devices either
fraudulent or benign through feature engineering. We then propose
and develop E���H�����, the �rst mobile ad fraud detection system
based on ad bid request logs, which can identify fraudulent devices
with high accuracy and automatically identify fraudulent clusters.
We reveal several cheating strategies adopted by click farms based
on the results of E���H�����. We further deploy optimized E����
H����� on a 1-day’s real-world dataset, which demonstrates its
practicality. The results and �ndings developed in this paper have
been acknowledged, and the proposed E���H����� will be inte-
grated into the platform of our industry partner, a leading ad tra�c
veri�cation company (Company A), to combat the current burgeon-
ing mobile ad fraud.
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APPENDIX
A SENSITIVITY OF PARAMETERS
We evaluate the sensitivity of parameter settings of E���H�����
(Sec. 6.1, Table 4). The parameters are listed in Table 4. We start
from an initial setting ([ = 5, (8<C⌘A = 0.5, BC⌘A = 0.5,U = 10�4)
and change one parameter at a time to �nd the best parameter
settings. All the experiments are conducted 5 times, and we report
the mean values in this section. Note that the standard deviations
are very small (<1%) in all the experiments.
(. We have found that [ does not impact the �nal result too much
(in Fig. 13). Meanwhile, the larger [ is, the longer the total time cost
will be. However, we cannot simply choose the minimum value (1)
for [: much information would be discarded if we only keep the
top-1 app. Here we de�ne the ;>BB (:) as the ratio of discarded ad bid
logs compared to [ = 1 when setting [ = : . As shown in Fig. 13,
there is a tradeo� between loss and the time cost when [ increases;
loss is decreased to 0.4% when [ = 5. Therefore, we choose [ = 5 as
the optimal setting.
Y imthr . Similar to [, we also �nd that (8<C⌘A has little e�ect on
the accuracy (Fig. 14). Recall that the main goal of (8<C⌘A is to drop
edges with low weight. The value of it has a huge impact on the
clustering result: if a large (8<C⌘A (e.g., 0.9) is chosen, many edges
with a lower weight will be deleted, which will lower the size of
individual clusters. Therefore, we evaluate the number of devices
(=D<) in the biggest cluster using di�erent (8<C⌘A to make sure
that a reasonable (8<C⌘A is chosen. The result in Fig. 14 shows that



Figure 13: [ Experiment Figure 14: (8<C⌘A Experiment Figure 15: BC⌘A Experiment

Figure 16: U Experiment

once (8<C⌘A >= 0.7, =D< starts to decrease, which means the clus-
tering result is negatively impacted by (8<C⌘A . Moreover, the time
cost starts to decrease when (8<C⌘A >= 0.2; it plateaus between
(8<C⌘A = 0.5 and (8<C⌘A = 0.6. Based on the above observations,
we choose (8<C⌘A = 0.5.
sthr and " . We use similar methods to choose the best values
of BC⌘A and U . Because they are only involved in the aggregation
stage (Stage 3), their impact on the time cost is negligible. When
BC⌘A increases, the accuracy and precision increase while the recall
drops (Fig. 15). BC⌘A = 0.3 is the turning point, so we choose BC⌘A =
0.3 as our setting. For U (Fig. 16), when U increases, accuracy and
precision �rst increase until U reaches 10�3, then decrease after
that. Meanwhile, recall drops slowly all the time. Therefore, we
choose U = 10�3.
Summary. Based on our evaluation, we use ([ = 5, (8<C⌘A =
0.5, BC⌘A = 0.3,U = 10�3) as the optimal settings, and use the set-
tings in the paper.

B SYSTEM UPDATE
In practice, attackers will keep evolving their cheating strategies
to avoid detection. Therefore, E���H����� must be able to update
periodically. In this section, we present a simpli�ed update scheme,
which updates E���H����� per week.
Methodology. In Stage 1, we periodically retrain the classi�er
using an active learning approach [34, 35]. At the end of each week,
we collect the devices labeled by E���H����� in the last week (7
days) and use them to retrain the classi�er if the con�dence of the
prediction is high, e.g., the predicted score is within [0, 0.1] (for
benign devices) or [0.9, 1.0] (for fraudulent devices). Alternatively,
new datasets can be obtained using other means (e.g., from other
companies) to retrain the classi�er. For the threshold parameters
used in Stages II and III, we keep these parameters as �xed values
for incoming new datasets until the result of o�ine cross-validation

Figure 17: Accuracy with and without updating.

Figure 18: Log number distribution of the top 50 apps.

signi�cantly drops. Once it happens, we search for the threshold
parameters as we did in Appendix A.
Evaluation. We use ⇡2020 to perform an evaluation of our weekly
updating scheme. We compare the accuracy with and without up-
dating in Fig. 17. The �rst model (M1, in blue) is trained with the
data of day 0. The second model (M2, in yellow) is an updated
version of M1, retrained using the labels of the �rst week at the
beginning of the second week (7th day). M2 is then tested on the
dataset since the 7th day. Similarly, the third model (M3, in green)
is trained with the dataset of the �rst two weeks, and tested using
the data of the last two weeks; the fourth model (M4, in red) is
trained with the data of the �rst three weeks and tested using the
last week’s data. The results suggest that our updating scheme can
indeed improve the accuracy.

C PROFILING TOP 50 APPS
To have a deeper insight into the ad fraud caused by invalid tra�c
in 2018, we use the following method to build suitable versions of
E���H����� in 2018 and pro�le top 50 apps.
Methodology.

Since fraudulent devices may exhibit di�erent features in di�er-
ent years, we can not directly apply the trained model in 2020 to
predict the old devices in 2018. Thus we retrieve the device IDs of
the labeled devices in 2020 from the full bid logs of 2018. As a result,
we found a total of 3,840 fraudulent and 5,070 benign devices in 2018.



Figure 19: The distribution of fraudulent log ratios (FLR)
and fraudulent device ratios (FDR) of the top 50 apps.

Then we use these devices as the training dataset and then train
the device classi�er. The classi�er achieves 80.7% accuracy, 78.5%
precision, and 86.1% recall in the 2018 dataset. To study the top
apps sending the largest number of ad bid requests, we use 300,000
random sampled Android devices in the 2018 dataset, predict them
with E���H�����, and extract the bundle IDs contained in their
logs. We then calculate the number of logs for each app, as well as
the number of fraudulent logs, i.e., logs generated by fraudulent
devices. We de�ne the following metrics (Eqns. 4–6), including a
fraudulent device ratio (FDR), a fraudulent log ratio (FLR, identical

to a previous invalid tra�c ratio), and an app fraudulent degree
(AFD) to represent the fraud degree for each app.

FDRi =
# Fraudulent devices of app 8

# Total devices of app 8
, (4)

FLRi =
# Fraudulent logs of app 8

# Total logs of app 8
, (5)

AFDi =

8>>><
>>>:

low, FLRi 2 [0, 0.33),
medium, FLRi 2 [0.33, 0.66),
high, FLRi 2 [0.66, 1] .

(6)

The results of the top 50 apps, with respect to log numbers, and
detailed statistics of the top 5 apps are shown in Fig. 18 and Table 7,
respectively. From Fig. 18 and Table 7, we can see that the top apps
generated 4,974,027 ad bid requests, and 1,925,669 requests were
invalid; the top 5 apps all together generated more than 200,000
requests. We further studied FLR and FDR, as shown in Fig. 19. We
can see that 14 out of the top 50 apps exhibited high FLR (>50%),
wherein 6 apps had an FDR higher than 30%. This indicates that
a relatively small number of fraudulent devices generate a larger
number of ad requests.



Table 7: Statistics of the top 50 apps sendingmost ad bid requests in the 2018 sampled dataset (300,000 devices). FLR is the fraud-
ulent log ratio (invalid tra�c ratio); FDR is the fraudulent device ratio; AFD is the app fraud degree (de�ned in Appendix C).
The results are derived from E���H�����. The daily loss is the estimation based on the average eCPM value ($2). # 19, # 22,
and # 48 are iOS apps with unknown numbers of downloads. # 49 is unavailable in any market.
Rank App Bundle ID Version # Downloads Latest Update # Logs FLR # Devices FDR Available AFD Daily Loss

1 com.cl*********.********* 6.03.5 5 B 2020/07/31 1,102,014 42.72% 17,455 7.44% Yes Medium $303,461
2 com.xu****.**************** 5.55.2 2 B 2020/07/31 411,661 2.13% 7,929 0.88% Yes Low $5,645
3 com.ij******.************** 5.3.3 528 M 2019/10/23 372,631 70.51% 785 22.55% Yes High $169,360
4 com.cl*********.*********** 4.2.3 760 M 2020/07/11 303,726 55.13% 3,776 20.68% Yes High $107,920
5 com.co********** 5.1.2 211 M 2019/08/09 209,332 87.11% 613 43.39% Yes High $117,528
6 com.co****.*********** 6.6.0 674 M 2020/07/12 204,402 33.93% 1,122 7.22% Yes Medium $44,698
7 com.ji***.***** 2.8.26 3 B 2020/07/29 166,085 16.75% 6,816 9.26% Yes Low $17,929
8 com.an*****.******* 12.7.10 12 B 2020/08/07 150,159 18.12% 768 3.26% Yes Low $17,534
9 net.mo******.************* 2.6.2 69 M 2020/05/15 133,471 51.25% 50 14.00% No Medium $44,088
10 com.sh**.******* 2.4.602 534 M 2020/07/31 132,317 44.26% 797 6.02% Yes Medium $37,742
11 com.qi***.********* 2.6.2 104 M 2020/07/27 115,721 30.84% 2,500 4.64% Yes Low $23,000
12 com.ou*****.********** 2.0.3 32 M 2013/08/16 88,555 45.38% 30 20.00% No Medium $25,904
13 com.so******.******** 2.0.2 397 M 2019/12/27 86,111 33.00% 1,094 10.05% Yes Low $18,318
14 do****.****** 7.5.3 367 M 2020/02/13 77,829 6.55% 756 1.19% Yes Low $3,287
15 com.wa***** 3.5.7 14 M 2019/06/04 72,880 0.00% 43 0.00% No Low $0
16 com.ca********* 3.1.2 262 M 2020/07/20 72,562 14.56% 1,751 7.08% Yes Low $6,810
17 com.ma****.****** 2.4.76 737 M 2020/07/30 71,844 37.42% 777 14.93% Yes Medium $17,326
18 com.tv******.**** 5.2.3 43 M 2020/05/09 70,479 30.38% 322 12.73% Yes Low $13,799
19 com.mo**.********** 1.1 - 2020/06/24 70,073 93.74% 68 76.47% No High $42,339
20 com.ne*****.**********.******** 33.1 3 B 2020/07/29 66,937 0.05% 5,417 0.02% Yes Low $19
21 com.zx**.****** 2.4.1 1 M 2017/09/12 61,161 74.25% 171 25.73% No High $29,270
22 com.ne*****.**** 33.1 - 2020/07/22 55,420 77.70% 1,637 69.40% Yes High $27,756
23 com.sh**********.******** 8.6.4 7 B 2020/07/31 50,700 7.38% 8,776 4.49% Yes Low $2,411
24 com.le***.**** 2.4.6 1 B 2020/07/23 50,392 2.66% 3,291 1.37% Yes Low $862
25 com.yd**.**** 1.0 1 K 2018/01/23 46,092 0.71% 4,906 1.04% No Low $212
26 com.hu***.************* 1.1.1 1 K 2019/07/26 45,040 47.12% 19 31.58% No Medium $13,678
27 com.ly.********** 1.1.8 36 M 2019/12/11 42,581 20.07% 90 12.22% Yes Low $5,507
28 �********.***************** 1.0 10 K 2017/03/29 40,328 29.72% 955 11.10% No Low $7,725
29 com.wt***.******* 3.6.2 1 M 2016/01/26 39,662 39.07% 133 11.28% No Medium $9,987
30 com.du****.*****.***** 3.6.5 1 B 2020/08/04 39,005 0.16% 1,234 0.57% Yes Low $39
31 com.sh**.******* 2.1.4 3 M 2019/06/15 38,694 77.24% 88 27.27% No High $19,263
32 com.zx**.****** 3.7.702 63 M 2020/05/07 34,975 61.28% 236 12.71% Yes Medium $13,815
33 com.du****.******* 2.7.5 20 M 2017/06/28 33,671 42.04% 2,599 7.58% No Medium $9,124
34 com.fo******.********** 5.0.5 17 M 2019/09/17 29,673 42.72% 46 13.04% Yes Medium $8,169
35 com.hu**.***** 7.0.21 203 M 2020/07/25 28,223 35.41% 544 10.48% Yes Medium $6,442
36 com.pa****.********************* 1.19 1 K 2018/01/19 27,328 50.60% 3,463 24.86% No Medium $8,912
37 com.pa****.*********.**** 3.9.11 4 K 2018/01/03 27,201 50.27% 3,480 24.77% No Medium $8,813
38 com.bl*******.*********** 2.3.6 109 M 2020/08/03 26,869 0.06% 293 0.34% Yes Low $9
39 com.ba***.***** 8.2.0 1 B 2020/08/03 26,689 1.43% 1,513 1.12% Yes Low $245
40 com.po**.********* 0.9 668 K 2018/11/10 26,004 41.60% 83 13.25% No Medium $6,972
41 com.ba***.*********** 7.13.0 - 2020/07/27 24,767 75.36% 1,399 54.11% Yes High $12,030
42 com.ca***.******* 3.0.1 52 2017/11/24 24,274 100.00% 2 100.00% No High $15,645
43 com.lg*******.***************** 2.0.0 7 M 2019/09/20 24,117 4.96% 720 3.61% Yes Low $771
44 com.ub******.*******.******* 3.5.2 206 M 2020/06/12 24,108 1.87% 317 1.89% Yes Low $290
45 com.ln**.**** 1.0 1 K 2018/01/12 23,915 0.84% 5,360 1.19% No Low $128
46 com.cl***.****** 5.1.2 2 M 2019/09/23 21,411 2.61% 703 2.42% No Low $359
47 com.mo****.************ 1.0.0 1 M 2019/03/11 21,363 23.40% 3,430 6.68% No Low $3,222
48 com.ru****.**** 7.1.3 180 M 2020/08/06 21,148 35.17% 629 10.97% Yes Medium $4,794
49 com.li*******.*** - - - 20,599 55.76% 41 21.95% - Medium $7,403
50 com.an*****.******* 1.0.0 8 M 2018/03/27 19,828 4.71% 773 3.49% No Low $602


