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SUMMARY 
Seismic inversion produces model estimates which are at most unique in an average 
sense. The model resolution matrix quantifies the spatial extent over which the estimate 
averages the true model. Although the resolution matrix has traditionally been defined 
in terms of the singular value decomposition of the discretized forward problem, this 
computation is prohibitive for inverse problems of realistic size. Inversion requires one 
to solve a large normal matrix system which is best tackled by an iterative technique 
such as the conjugate gradient method. The close connection between the conjugate 
gradient and Lanczos algorithms allows us to construct an extremely inexpensive 
approximation to the model resolution matrix. Synthetic experiments indicate the data 
dependence of this particular approximation. The approximation is very good in the 
vicinity of large events in the data. Two large linear viscoelastic inversion experiments 
on p-t marine data from the Gulf of Mexico provide estimates of the elastic parameter 
reflectivities corresponding to two different seismic sources. Traditionally, one evaluates 
the accuracy of the two reflectivity estimates by comparing them with measured well 
logs. The approximate model resolution matrices agree with the well-log ranking of 
the two models and provide us with a way to compare different model estimates when, 
for example, such well-log measurements are not available. 

Key words: inversion, seismic resolution, source time functions, viscoelasticity. 

INTRODUCTION 

In a classic paper, Backus & Gilbert (1968) gave a description 
of the general linear inverse problem and defined model 
resolution. They explained that solutions of seismic inverse 
problems are generally not pointwise unique but may still have 
unique average behaviour. Resolution quantifies how close the 
model estimates are to the true model as a function of spatial 
location (such as depth). It indicates the shortest length-scale 
which the given data can resolve. [References include papers 
by Franklin (1970), Jackson (1979), Kennett & Nolet ( 1978), 
and the book by Menke (1989).] Wiggins (1972) defines this 
matrix in terms of the singular value decomposition (SVD) 
and analyses resolution for a very small inversion problem 
(approximately 10 unknowns) using observed data from surface 
waves and free oscillations. He comments that, ‘computation 
of parameter and information resolution is such a simple 
extension of any inversion procedure based on perturbation 
parameters that such inversion studies are incomplete without 
considering resolution.’ Unfortunately, forming the resolution 
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matrix via the SVD has not become common practice because 
it is computationally prohibitive for large problems. 

There are a number of papers in which SVD resolution is 
computed for small inverse problems. For example, using 
waveform inversion and a viscoelastic simulator, Martinez & 
McMechan (1991) examine model resolution for a simple 
geometry experiment of a target layer located between two 
homogeneous half-spaces. For field data experiments they do 
not compute resolution. Bishop et al. (1985) analyse the 
resolution of components of a simplified tomography model 
analytically, and substantiate their conclusions with a small 
numerical experiment performed on real data. 

There have also been attempts to compute the full SVD for 
realistic (large) inverse problems [see, for example, Assous & 
Collin0 (199O)l. Ory & Pratt (1995) examine the effect of 
different regularizing operators on resolution. They consider a 
synthetic experiment of determining three 1-D anisotropic 
velocity parameters from traveltime data, and state (p. 420): 

One practical problem that arises is the cost of computing the 
model resolution matrix, either because of too large a number 
of data, or too large a number of parameters . . . or both. It took 
about 3 hours CPU time ... to compute the matrix in our 
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346 S. E .  Minkof 

one-dimensional anisotropic parameter problem ( 576 parameters 
and 1420 data). For larger problems, this computation becomes 
prohibitive. 

Vasco, Pulliam & Johnson (1993) used a massively parallel 
computer to determine a model of P-wave velocity variations 
of the Earths mantle from traveltime data. They formed the 
full resolution and covariance matrices. [See also the paper by 

, Pulliam & Stark (1994) and the reference lists located in 
both papers.] 

Recently, a number of authors have suggested computing 
partial (approximate) resolution information. Scales ( 1989) 
outlined a method for constructing the matrices needed for the 
Lanczos eigenvalue estimation algorithm from the conjugate 
gradient linear system solver. I use the same connection in this 
paper. He did not, however, form the model resolution matrix 
from the resulting approximate eigen information. Nolet & 
Snieder (1990) gave a theoretical overview of the application 
of Paige & Saunders’ (1982) least-squares QR decomposition 
(LSQR) algorithm to the continuous inverse problem, but did 
not give any numerical examples. Berryman described both a 
Lanczos method (1994a) and an LSQR-based method (1994b) 
for computing resolution. The Lanczos technique is very 
similar to the method discussed in this paper. Although he 
gave a small ( 4  x 4) seismic tomography example of LSQR, he 
did not give a numerical example of the Lanczos method. 
Zhang & McMechan (1995) applied LSQR to a larger set of 
synthetic tomography problems. 

In this paper, we approximately solve the inverse problem 
using the conjugate gradient technique and simultaneously 
estimate some of the eigenvalues and eigenvectors of the 
normal matrix via the closely related Lanczos algorithm. This 
subset of eigenvectors allows us to form a partial resolution 
matrix at almost no additional cost over solving the inverse 
problem. The size of the problem does not restrict our ability 
to compute this approximation to resolution. One can apply 
this technique, without modification, to any type of inverse 
problem where resolution should be analysed. 

In the next sections, I give a brief description of model 
resolution, the conjugate gradient, and the Lanczos algorithms. 
This discussion includes a list of the steps taken to form the 
model resolution approximation. I apply the technique to 
synthetic and field data full waveform inversion tests of p-z 
marine reflection data. The small acoustic synthetic example 
illustrates that, at least in some instances, this approximation 
converges extremely quickly to the true resolution matrix. The 
rate of convergence of the approximation improves near large 
events in the data. This hypothesis is reasonable because the 
Lanczos search directions depend on the data. 

In the field data experiments I use a viscoelastic model for 
wave propagation in the Earth, and invert for the three elastic 
parameter reflectivities that linearly influence the data. The 
two inversion experiments differ only in the seismic sources 
used. I include resolution diagrams for the three parameters 
estimated in the two experiments. Detailed descriptions of the 
forward model, inversion procedure, and data are given in the 
Appendix. The resolution study of these two experiments 
agrees with independent measurements (for example, well-log 
comparisons to inversion results), indicating that one of the 
two sources (the inversion-estimated source) provides more 
accurate elastic parameter estimates than the other (air-gun 
model source). 

THE MODEL RESOLUTION DATA 

We wish to quantify our ability to resolve the individual model 
parameters from the forward model for the seismogram G.  It 
is necessary to devise a generalized inverse or estimator G - g  
which will act on the data and return an estimate of the model 
parameters. The simplest way to define the model resolution 
matrix is to assume that there is a set of model parameters 
mtrue E W” which satisfies the equation Gmtrue =dabs, for the 
forward modeller G E W” x n  and observed data dobs E 9”. The 
resolution matrix (Menke 1989) measures the averaging of the 
model mtrue which enters into the model estimate mest in the 
inversion process: 

(1) 

where R E W”x’2 is the model resolution matrix. If R = I  then 
, and the model parameters are perfectly resolved 

in the inversion. In general, R f  I, and then the model 
estimates mest are weighted averages of the true parameters 
mfst = aTmtrue . Note that this averaging vector a corresponds 
to a column of the resolution matrix R .  In the experiments I 
will describe, the model parameters depend on one spatial 
coordinate only, namely depth ( z ) ,  and the averaging vectors 
correspond to averages over depths. 

The singular value decomposition allows us to decompose 
the forward operator into the matrix product G = UZVT 
(Golub & Van Loan 1989, page 71). The columns of U are 
eigenvectors of GGT (the left singular vectors of G ) ,  and the 
columns of V are the eigenvectors of GTG (the right singular 
vectors of G ) .  Finally, the p singular values on the diagonal 
of C = diag(al, ... , a,) are the square roots of the non-zero 
eigenvalues of GGT and G T G  (the singular values). Of impor- 
tance to us in this paper is the fact that V s  columns are 
eigenvectors which span the model space M .  

Only the p non-zero singular values contribute to the model 
resolution matrix, so we work instead with the truncated SVD 
defined by G = U p C p  V,’ where U p  and V,’ consist of the first 
p columns of U and V respectively, and C, is a p x p diagonal 
matrix. We note that, although VE V, = I ,  in general, since the p 
right singular vectors do not span the whole space, V, V,’ # I .  

A version of the estimator G-g can now be expressed 
in terms of the truncated singular value decomposition, 

expression ( I ) ]  is simply 

mest - - ~ - g d o b s  = ~ - g ~ ~ t r u e  = - Rmtrue 

mest - lyltrue - 

G-8 = V , C-’ , UT ,, and the model resolution matrix [from 

In my implementation, I do not explicitly compute the SVD. 
Instead, I calculate an approximate resolution matrix by 
estimating some of the eigenvalues and eigenvectors of the 
normal matrix through the Lanczos iterative procedure, 
described in the next section. 

DISCUSSION OF THE CONJUGATE 
GRADIENT A N D  LANCZOS ALGORITHMS 

The normal matrices typical of seismic inverse problems are 
large, so we prefer to use iterative methods to solve these 
linear systems approximately. If the normal operator were 
symmetric and positive-definite, an appropriate technique for 
solving this system would be the conjugate gradient algorithm. 
[In reality, these inverse problems often produce normal 
matrices with large nullspaces (see Fig. 4 for the synthetic 
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Approximate model resolution via Lanczos 347 

example)]. Therefore, applying an iterative technique such as 
conjugate gradients (which we terminate after a small number 
of iterations) regularizes the problem. See, for example, Hanke 
(1995) and the excellent reference list therein. 

The conjugate gradient algorithm provides the parameters 
needed to construct the tridiagonal matrix for the Lanczos 
iteration (Scales 1989). The extreme eigenvalues of this tri- 
diagonal matrix approximate those of the original matrix (in 
our case, the normal matrix). The corresponding eigenvectors 
of the normal matrix can be found from the eigenvectors of 
the tridiagonal matrix by multiplying by the Lanczos matrix 
(changing bases). The eigenvalues provide information about 
the condition of the normal matrix. The eigenvectors of the 
normal matrix (right singular vectors of the forward operator) 
allow us to measure the model resolution. 

The next two subsections describe the conjugate gradient 
and Lanczos algorithms in general terms. The classic references 
for these two algorithms are papers by Hestenes (1980), 
Hestenes & Stiefel (1952) and Lanczos (1950). Golub & 
O'Leary ( 1989) give a bibliographical reference history of the 
two methods. 

The conjugate gradient idea 

[The following general description of the conjugate gradient 
algorithm is taken from Golub & Van Loan (1989, 
pp. 516-520).] The Hestenes-Stiefel conjugate gradient 
algorithm can be understood in the context of minimizing the 
function #(x) defined by 

( 3 )  

where b E d", and the matrix A E R""" is assumed to be 
positive-definite and symmetric. The minimizer of q5 is 
x = K ' b .  So, minimizing the function q5 and solving the linear 
system Ax = b are seen to be equivalent problems. 

One choice for decreasing the function q5 is to travel in the 
negative gradient direction, - Vq5(xc) = b - Ax,, from the cur- 
rent point x,. One notices that the negative gradient direction 
is the residual direction rc of the system at the current point. 
Unfortunately, as is well knpwn, this method (steepest descent) 
may converge extremely slowly if the condition of the system 
(or ratio of the largest to smallest eigenvalues) is large. The 
conjugate gradient algorithm, therefore, chooses to minimize 
q5 in a set of directions {pl,  p z ,  ...} which do not necessarily 
correspond to the residual directions. One approach with clear 
benefits is to choose linearly independent directions p i  so that 
each x j  solves 

min &x). 
x t span{pl .. . . .P, J 

(4) 

This choice of search directions ensures finite termination 
of the algorithm in at most n steps. We would like a vector p j  
such that, when we solve the 1-D minimization problem 

min q5(xj-l + u p j ) ,  (5) 
L1 

we also solve the j-dimensional problem (4). Luckily, such a 
solution is possible if we require the directions p j  to be 
A-conjugate to the previous directions pl,  . . . , p j -  The vectors 
pl,  . . . , p j  are A-conjugate if Pi'_ 'Apj  = 0. The search directions 
satisfy the following theorem (Golub & Van Loan 1989, p. 521): 

Theorem: After k iterations of the conjugate gradient algorithm, 
we have 

span{p,, ..., p j }  =span{ro, ..., r j - ] }  =span{b,Ab ,..., Aj-lb}. 

The Lanczos idea and connection to the conjugate 
gradient algorithm 

[This description of the Lanczos algorithm can be found in 
more detail in Golub & Van Loan ( 1989, pp. 476-480).] The 
Lanczos algorithm, when applied to a symmetric matrix 
A E d""", generates a sequence of tridiagonal matrices 
Ti E d j ' j  with extreme eigenvalues which are progressively 
better estimates of the extreme eigenvalues of A. 

One way to motivate the Lanczos idea is to recall the 
Rayleigh quotient which can be used to approximate the 
eigenvalues of a matrix A. Let A, be the largest eigenvalue of 
A and I ,  the smallest. For Q j =  [ql, ... , qj], a matrix in d" ' j  

with orthonormal columns, we define the scalars M j  and mj 
by 

(7) 

The Lanczos algorithm provides a way to compute the q j  
so that the scalars M j  and mj are better and better estimates 
of I , ( A )  and &(A).  Let x = Q j y .  Then the Rayleigh quotient 
changes most rapidly in the direction of its gradient, which is 
a vector contained in span {x, A x } .  For this reason, the Lanczos 
vectors { q i } i  are chosen to be an orthonormal basis for the 
Krylov subspace (Golub & Van Loan 1989, p. 477): 

K(A,  ql,  j )  = span{q,, Aq1, ... , A j - ' q l }  = spanrq,, ... , q j }  . 

(8)  

At the jth iteration of the Lanczos algorithm we have a 
matrix Q j  E R" ' j (the Lanczos matrix) whose columns are the 
normalized residuals resulting from the conjugate gradient 
algorithm (which can be shown to be orthonormal) and a 
symmetric, tridiagonal matrix T E Rj'j. In fact, the Lanczos 
matrix 'tridiagonalizes' the matrix A up to an error matrix 
(Golub & Van Loan 1989, pp. 477-478): 

AQj = Q j  Ti + rjeT (9) 

The entries in Tare  combinations of the parameters generated 
in the conjugate gradient iteration (for details see the Algorithm 
subsection below). 

Definition of the approximate model resolution matrix 

As stated in the section on model resolution, we are solving 
the problem Gm = d where the forward operator G E 9"' ". 
Assuming that rank((;) = n, we may instead solve the normal 
system 

GTGm = GTd. (10) 

Let A = GTG and b = GTd. Calling the model solution x (rather 
than m}, eq. (10) can be written in more standard notation as 
Ax = b. Rather than calculating the full model resolution 
matrix defined by the SVD (computationally prohibitive), we 
approximate this matrix via the following steps. 
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348 S. E.  Minkof 

(1) Solve the system A x  = b approximately by performing j 
steps of the combined conjugate gradientllanczos algorithms. 
The solution x j  is the one which comes closest to solving 
the system A x = b  in the Krylov subspace spanned by 
{ b, Ab, . . . , A'- b} .  Similarly, the j eigenvalue estimates from 
the Lanczos process are optimal for this subspace. 

(2)  Decide on an acceptable tolerance level for the error in 
the eigenvalue approximations. From the j approximate eigen- 
vectors, determine the k consecutive eigenvectors that corre- 
spond to the eigenvalues with approximation error 5 tolerance. 

( 3 )  Form the matrix V whose columns are these k approxi- 
mate eigenvectors. The remaining j - k eigenvectors are deemed 
too erroneous to be included in V. The matrix V has dimension 
v E g p * k .  

(4) Form the approximate resolution matrix Rlanc = VVT. 
Rlanc E 9" '". 

It must be stressed that this resolution matrix is not the 
(traditional) resolution matrix R = G-gG.  In the examples 
described in the section on plane-wave marine field data 
experiments, I invert for three reflectivity parameters each of 
which is described by 626 points, so the model m consists of 
nearly 2000 points. The conjugate gradient algorithm provides 
a good estimate of the solution with many fewer iterations, 
however. In fact, I performed only 30 iterations of the combined 
conjugate gradient/Lanczos algorithm. Furthermore, I dropped 
the six or seven smallest eigenvectors from the matrix V 
because of approximation error. 

Algorithm 

A pseudocode version of the two algorithms (conjugate gradient 
and Lanczos) follows. 

Variables used 

A:  
b: 
r: 
.yo : 

P :  
P: 
4 
tlP 
rtrc: 
rtr,: 
tol: 

x: 

Q :  
T: 

z: 
X :  

normal operator 
data 
residual 
starting solution 
approximate solution 
conjugate gradient direction 
parameter used in computation of new direction p 
step length in current direction p 
step length in previous direction 
inner product of current residual with itself 
inner product of previous residual with itself 
relative residual tolerance used for determining algorithm 
convergence 
Lanczos matrix 
tridiagonal matrix resulting from Lanczos process with 
eigenvalues approximating those of A 
matrix of eigenvectors of the tridiagonal matrix T 
matrix of approximate eigenvectors of the original 
matrix A.  

Algorithm ( conjugute gradientllanczos ) 

If A E W" '" is symmetric and positive-definite and b E BY, then 
the following algorithm computes x E 2" so that A x  = b. The 
algorithm also optionally approximates some of the eigenvalues 
and eigenvectors of the matrix A. The notation II.II indicates 

norm and (.;) the associated inner product for that space. 
The algorithm is not restricted to models in L2. 

initialize: 
r = b - Ax,  
x = x o  

if eigenvector flag = true 

end if 
i f j =  1 

p = r  
rtr, = (r,  r )  

P = rtr,/rtr, 
P = r + P P  

for j = 1 :iteration limit 

Q(:, j )  = rl II r II 

p = 0  

else 

end if 
up = Ap 
PtaP = ( €4 U P )  
if ptap < to1 

break 
end if 
tl, = rtr,/ptap 
x = x + a,p 
r = r - acap 
if eigenvalue flag = true 

i f j =  1 
T(j,j) = 
T ( j , j -  1 ) = 0  
T ( j - l , j ) = T ( j , j - 1 )  

T(j, j) = rtrc/(rtrpap) + l/a, 
T(j, j - 1) = - J 5 / a p  
T ( j -  l , j ) =  T(j , j-  1) 

else 

end if 
Call LAPACK routine to get eigenvalues/vectors (Z)  of 
T (Anderson et al. 1992). 
Compute error in approximate eigenvalue for normal 
operator. 

end if 
rtr, = rtr, 
rtr, = <r, r> 
up = tl, 

if Jrtr, < to1 

end if 
if eigenvector flag = true 

end if 

break 

Q Z = X  

end 

A QUALITATIVE LOOK AT 

EXPERIMENT 

I used the same layered medium, primaries only, plane-wave 
forward simulator for both the synthetic and field data experi- 
ments. However, for the synthetic experiment I modified the 
simulator input to represent constant-density acoustic rather 
than viscoelastic wave propagation (which was used for the 

APPROXIMATION ERROR-A SYNTHETIC 
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Approximate model resolution via Lanczos 349 

field data experiments). This simpler model suffices to indicate 
when the approximation is accurate and when it is not. 

Let c(z) be the depth-dependent sound velocity. The 
reflectivity is then the short-scale heterogeneity in the velocity, 
or r(z) = Gc(z)/c(z). The layered-medium assumption (that the 
velocity depends only on depth) allows us to apply the Radon 
integral transform (or plane-wave decomposition) to the normal 
displacement obtained from the solution to the acoustic wave 
equation. Thus one can reduce the 3-D problem to a family 
of 1-D equations (Treitel, Gutowski & Wagner 1982). These 
equations are parametrized by slowness, p .  By assuming a 
primaries-only or single-scattering approximation and by using 
high-frequency asymptotics, we can write the convolutional 
equation for the seismogram: 

d+( t ,  p )  = f (  t )*F( t ,  p ) .  

Here, '*' denotes convolution in time t ,  and f is the isotropic 
source (assumed to have point support). The expression for 
the reflectivity as a function of time, P (or perturbation of the 
Green's function for the acoustic wave equation), is given by 

P( t ,  p )  % Sdz"4(z)r (z .  p ) ] 6 (  t - 2 4 ,  

where A is the reflectivity amplitude from geometric optics. 
The vertical (plane-wave) velocity changes form when we 
Radon transform, becoming 

2@, p )  = C ( Z ) / J l  - c2(z)pZ 

Similarly, the reflectivity r(z, p )  is now the relative perturbation 
in this transformed velocity. The traveltime function is 

The plane-wave data used in the experiments (see Fig. 1) 
were generated from the isotropic source shown in Fig. 2 and 
the reflectivity shown in Fig. 3, dashed line. These two model 
parameters are based on field data parameters used in the next 
section, namely the first trace of the anisotropic air-gun model 
source (Fig. 11) and an unscaled version of the estimated 
reflectivity (Fig. 20, solid line). The reflectivity has been 
truncated to zero outside of the depth interval of 2000-2400 m. 
The model is discretized using 100 grid-points. The data has 
13 plane-wave traces with slowness values ranging from 
0.116msm-' to 0.365ms.m-'. 

Because I chose to invert for a reflectivity defined over a 
small depth interval, I was able to compute the full SVD 
model resolution matrix and to compare this matrix with the 
approximation. The conjugate gradient algorithm solved the 
normal equations (with a relative error of 0.5 per cent) in eight 
iterations. Fig. 3 shows the target reflectivity (dashed curve) 
and the inversion result after eight iterations (solid curve). The 
normal operator singular values are shown in Fig. 4. (Note 
the very large nullspace.) Figs 5, 6 and 7 show three columns 
of the 100-column model resolution matrix after eight com- 
bined conjugate gradient-Lanczos iterations. Fig. 5 is the 
column of the resolution matrix corresponding to a depth of 
2120 m. Fig. 6 is the column corresponding to 2180 m depth, 
and Fig. 7 corresponds to 2240 m depth. Each graph has three 
curves. The dashed line is the appropriate column of the full 
SVD resolution matrix. The solid line is the same column of 
the Lanczos-estimated resolution matrix formed from the 
equation Rlanc= VVT, where V has eight columns each of 

time 

Figure 1. The common-midpoint data gather used for the synthetic 
experiment ( 13 plane-wave traces generated from the isotropic source 
function shown in Fig. 2 and the acoustic impedance shown in Fig. 3 
dashed line) 

-501 
-300 -200 -100 0 100 200 : 

time (ms) 
10 

Figure 2. The isotropic (15 Hz peak frequency) source which gener- 
ated the data shown in Fig. 1. 

length 100 (the eight normal operator eigenvectors estimated 
from the Lanczos process). The crossed line is the same column 
of a second partial resolution matrix Rpsvd formed from the 
eight eigenvectors corresponding to the eight largest eigenval- 
ues of the full SVD. Although I at first believed the resolution 
matrix approximation Rlanc would be close to the partial SVD 
resolution matrix Rpavd, there are marked differences between 
the two approximations. At the target location of 2180m 
depth (Fig. 6), the Lanczos approximation (Rlanc) converges to 
the full SVD resolution kernel (R) more quickly than does the 
partial resolution matrix (Rpsvd) formed from the eight largest 
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-1.5l 
2000 2050 2100 2150 2200 2250 2300 2350 2400 

depth (m) 

Figure 3. Solid curve: acoustic impedance inversion result after eight 
iterations. Dashed curve: acoustic impedance target which generated 
the data shown in Fig. 1. 
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Figure 4. The complete eigenvalue spectrum of the normal operator 
for the synthetic experiment. 

exact eigenvectors. Away from the target location, the Lanczos 
estimate does slightly worse. I observed the same behaviour 
after only five iterations of the conjugate gradient-Lanczos 
algorithm (stopping tolerance of 1 per cent), as well as in other 
synthetic experiments. 

The conjugate gradient solution x j  is optimal for 
x j  E K ( A ,  b, j )  = span {b,  Ab, ... , A j - l b } .  The version of the 
Lanczos algorithm I used is extremely inexpensive because the 
necessary inputs to the algorithm come from the conjugate 
gradient algorithm directly. Thus, the eigen estimates must be 
data-dependent as well. 

PLANE-WAVE MARINE FIELD DATA 
EXPERIMENTS 

Modelling, inversion and the data 

In this section I apply the conjugate gradient and Lanczos 
algorithms just described to the linear inverse problem of 
estimating three elastic parameter reflectivities in the visco- 

-0.11 I 
2000 2050 2100 2150 2200 2250 2300 2350 2400 

depth (m) 

Figure5. Dashed curve: column 30 (corresponding to a depth of 
2120 m) of the full SVD model resolution matrix. Solid curve: Lanczos 
estimate of the same column using eight iterations of the combined 
conjugate gradient-Lanczos procedure (eight eigenvectors). Crossed 
line: SVD estimate of the same column using the eigenvectors corre- 
sponding to the eight largest eigenvalues from the full SVD of the 
normal matrix. 

0.251 I 

-0.1 I I 
2000 2050 2100 2150 2200 2250 2300 2350 2400 

depth (m) 

Figure6. Dashed curve: column 45 (corresponding to a depth of 
2180 m) of the full SVD model resolution matrix. Solid curve: Lanczos 
estimate of the same column using eight iterations of the combined 
conjugate gradient-Lanczos procedure (eight eigenvectors). Crossed 
line: SVD estimate of the same column using the eigenvectors corre- 
sponding to the eight largest eigenvalues from the full SVD of the 
normal matrix. 

elastic model for wave propagation in the Earth. I will compare 
the resolution obtained for reflectivities from two different 
experiments. These experiments were performed on a real 
marine common-midpoint data gather close to a logged well. 
In Experiment 1, an air-gun model anisotropic source was 
used to estimate the three reflectivities. In Experiment 2, the 
reflectivities and an anisotropic source were estimated via 
linearized inversion. All other inputs to the model were fixed, 
having been estimated by inversion or some other means prior 
to these two experiments. 

Most of the details of the forward modelling and inversion 
procedures are described in Appendices A and B. The geometry 
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Approximate model resolution via Lanczos 35 1 

0.25 

-0.1) I 
2000 2050 2100 2150 2200 2250 2300 2350 2400 

depth ( r n )  

Figure7. Dashed curve: column 60 (corresponding to a depth of 
1240 m) of the full SVD model resolution matrix. Solid curve: Lanczos 
estimate of the same column using eight iterations of the combined 
conjugate gradient-Lanczos procedure (eight eigenvectors). Crossed 
line: SVD estimate of the same column using the eigenvectors corre- 
sponding to the eight largest eigenvalues from the full SVD of the 
normal matrix. 

of the physical marine experiment as well as data preparation 
are given in Appendix C. [For a reference to a related inversion 
study of the same marine data, see Minkoff & Symes (1996).] 
In summary, we model the Earth as a viscoelastic medium. 
The viscoelastic simulator we used was built on the solution 
approximation given in the book by Aki & Richards (1980, 
pp. 153-155). We make three assumptions; namely, that the 
Earth is a layered medium, that we will only model primary 
reflections, and that the source is high frequency relative to the 
frequency content of the seismic data. These assumptions lead 
to the viscoelastic convolutional model for the seismogram: 

dpred(t, p )  = f ( t ,  p ) * ? t ,  p ) .  

In the above expression, dpred is the predicted seismic data, f 
the anisotropic source wavelet, p denotes slowness, and t time. 
The '*' symbol is convolution in time. The time-dependent 
reflectivity P is approximated by the expression 

4 t ,  p )  d , - [Ap(=,  t ,  p ) r p ( z )  + AS(,-, t ,  p)rs( , - )  + AD(,-, t ,  p ) r & ) I .  

The depth-dependent P-wave velocity, S-wave velocity, and 
density reflectivities are the high-frequency quantities r, = 6vp/vpr 
rs = 6v,/oS, and r D  = 6p/p  respectively. These reflectivity terms 
are normalized with respect to the corresponding background 
or low-frequency quantities. The geometric optics reflectivity 
amplitudes A p ,  A,  and A ,  are defined in Appendix A. 

is linear in the seismic 
source f ,  and the elastic reflectivities r p ,  r,,  r D  separately. The 
inversion technique used is Output Least Squares (or OLS). 
This method requires that we adjust the inversion parameters 
r p ,  r,,  rD and f to minimize the mean-squared error 

j 

The predicted seismic data 

JoLs  = lldpred(t, p )  - dobs(t, p )  1 1 2 ,  
where dabs( t, p )  is the 'observed' p - t  data and /I. Ij is the L2 norm. 

The data used in this work were derived from a marine 
survey of the Gulf of Mexico. This area of the Gulf contains 

a strong gas-sand-related direct hydrocarbon indicator at 
about 2.3 s (see Fig. 8). The data were Radon transformed, 
respecting 3-D cylindrical symmetry, to yield 48 plane-wave 
traces per midpoint gather. Slowness values ranged from 
pmin = 0.116 ms m-' to pmax = 0.365 ms m-'. 

The two numerical experiments described in this section 
were performed on a single midpoint gather (Fig. 9) located 
near a logged well. For the well near this midpoint gather, we 
obtained block sonic and density (gamma ray) logs in the 
1.4-2.6 s (two-way time) interval. In the next subsection we 
describe how we used these logs in assessing the accuracy of 
the inversions and as a check on the resolution results. 

As the number of reflectivity samples is moderately large 
(approximately 2000 total for the experiments described here), 
it is natural to use an iterative minimization scheme. While 
the choice of source wavelet influenced the rate of convergence, 
30 iterations of the conjugate gradient algorithm were generally 
sufficient to reduce the normal residual to close to 1 per cent of 
its starting value. In both experiments, the initial estimates of 
the reflectivities were zero. The background P-wave velocity was 
estimated via non-linear differential semblance optimization 
(Kern & Symes 1994) and fixed in these experiments (see 
Fig. 10). 

Air-gun modelling software gave an a priori estimate of the 
source signature and radiation pattern. Fig. 11 shows this air- 
gun model source over the range of slowness values in the 
data, with every fourth trace displayed for clarity. This source 
was used in Experiment 1. The inversion-estimated source 
determined in Experiment 2 is shown in Fig. 18. Note that all 
the Experiment 1 figures are shown grouped together first in 
the paper. Then the figures for Experiment 2 are shown. 

Experimental results 

In Experiment 1, the seismic source (an air-gun model) was not 
updated in the inversion. The three elastic parameter reflectivities 
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Figure9. The common-midpoint data gather (CMP6) used for the 
two field data experiments contrasted in this paper. 
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Figure 10. The inversion-estimated P-wave background velocity used 
for all the inversion experiments in this paper. 

-1 00 

tirne(rns) 0 

.116 slowness (mdm) ,365 

Figure 11. The air-gun model source estimate used in Experiment 1 
with every fourth trace shown. 

were estimated. In Experiment 2 both the reflectivities and the 
seismic source were estimated using inversion. 

In an earlier subsection, a list of the steps required to 
approximate the resolution matrix was given. The first level of 
approximation error is introduced in step 1. In exact arithmetic, 
n steps of the conjugate gradient algorithm would be sufficient 
to determine the x E P which solves A x = b  exactly, since 
x would be found by searching the space spanned by n 
independent vectors. Similarly, the eigenvectors would be 
exactly determined. We actually perform far fewer than n 
iterations of the conjugate gradient algorithm, however, and 
so after j steps of the process we search for a solution to 
Ax = b (and eigenvectors of A )  which is optimal in a subspace 
spanned by only j basis vectors (generally j << n) .  A much less 
significant second level of approximation error occurs in steps 
2 and 3 when not all of the approximate eigenvectors are 
deemed reliable enough to be used. Instead, we select k of the 
j eigenvectors ( k  I j )  to form the matrix V (and therefore Rlanc). 
The number ( k )  of eigenvectors used to form V is determined 
by specifying an upper bound on acceptable error and applying 
the following result (Golub & Van Loan 1989, page 479): 

Theorem: Suppose that j steps of the Lanczos algorithm have 
been performed and that STT,Sj = diag(O,, ... , O j )  is the Schur 
decomposition of the tridiagonal matrix 7. If = [ y l ,  . . . , y j ]  = 
Q j S j  E &'J'j then for i = 1: j we have I1 A y i  - Oiy; IILZ = 1Pj lIsj;l 
where S j  = ( spq) .  

In the theorem, the matrix S contains the eigenvectors of the 
tridiagonal matrix T which comes from the Lanczos procedure. 
Q is the Lanczos matrix, Y is the matrix of approximate 
eigenvectors of the original matrix A, and Oi are the eigenvalues 
of T and approximate eigenvalues of A. Finally, /Ij is the last 
off-diagonal entry in the tridiagonal matrix T,. 

To compute our analogue of the SVD resolution matrix 
Rlanc for each experiment, we did not, therefore, rely on all the 
computed eigenvectors of the normal operator (columns of V ) .  
Figs 14 and 21 show the approximate eigenvalues graphed 
with the associated errors. Figs 15 and 22 show the relative 
error in the eigenvalues plotted against eigenvalue number 
(where '1' is always the smallest computed eigenvalue). 

For these experiments, the columns of the matrix V are the 
eigenvectors that correspond most closely to the largest eigen- 
values (the best determined in these experiments). However, 
this correspondence is not exact (see the synthetic experiment 
in the last section). These eigenvectors were chosen because 
they meet our (arbitrary) tolerance criterion, namely that the 
eigenvalues have an approximation error of less than 30 
per cent. 

Another well-known source of error in the Lanczos process 
comes from round-off and cancellation. These sources of error 
cause the Lanczos vectors to lose orthogonality. Error analysis 
done on this problem has been the motivation behind newer 
Lanczos procedures which attempt to minimize this loss of 
orthogonality (Parlett 1980). The approach I have implemented 
does not take advantage of these newer methods and is, 
therefore, subject to the problems caused by loss of ortho- 
gonality of the Lanczos vectors after a large number of 
iterations of the conjugate gradient procedure have been 
performed. I ran numerous experiments, therefore, to try to 
maximize the accuracy of the eigenvalue approximations while 
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Figure 12. Difference between actual and predicted data which 
resulted from inverting for the reflectivities with the air-gun source 
fixed (Experiment 1 ) .  The misfit is plotted on the same scale as the 
actual data. 
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Figure 13. Comparison of the independent well-log measurement of 
the relative short-scale fluctuation in the P-wave impedance with the 
result of inversion done on CMP6 using the air-gun model source 
estimate (Experiment 1). The solid line shows the inversion result 
(scaled). The dashed line shows the detrended well log. Both graphs 
have been plotted as a function of two-way time and filtered to match 
the frequency content of the source. 
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-51 
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Figure 14. The approximate eigenvalues of the normal operator for 
the reflectivity inversion with a fixed air-gun model source 
(Experiment 1). The errors in the eigenvalues are shown as error bars 
on the graph. 

minimizing the loss of orthogonality of the Lanczos vectors. 
Trial and error indicated that about 30 iterations of the 
conjugate gradient algorithm are optimal for this particular 
problem. If we let Q E gnxj be the Lanczos matrix after j 
iterations of the conjugate gradient algorithm, then ideally we 
should have that QTQ = I ,  with Z the j x j identity matrix. 
Plots of QTQ for the two experiments are shown in Figs 16 
and 23. 

The model resolution matrix R E 92""" may be quite large, 
which makes interpreting the data difficult. Various techniques 
have been devised for selecting interesting columns of R to 
examine. Three pairs of columns of the resolution matrix 
corresponding to the P-wave impedance reflectivity for the 
two experiments are shown in Fig. 25. The last pair of graphs 

5 10 15 20 25 
eigenvalue index where 1 =-> smallest approx. eigenuaiue 

and 30 => largest 

O b  D 

Figure 15. The relative error in the approximate eigenvalues of the 
normal operator for the reflectivity inversion with a fixed air-gun 
model source (Experiment 1) .  

corresponds to an area near the target for each experiment. 
The top two pairs were chosen at random. If the model 
parameter is perfectly resolved in the inversion at a certain 
depth, the plotted column should have a unit spike at the 
depth corresponding to that column of the resolution matrix 
and be zero elsewhere. For the three column comparisons 
shown, the top graph of the pairs (corresponding to the 
inversion-estimated source) is closer to a spike than the bottom 
graph (corresponding to the air-gun source). It is clear, how- 
ever, that none of the columns shown is very close to a unit 
spike. I am, after all, only estimating 30 eigenvalues out of the 
total of 626 possible (for the P-wave impedance) in these 
inversion experiments. Wiggins ( 1972) advocates examining a 
more intelligent choice of columns of the resolution matrix, 
namely those with the largest diagonal elements in the 
resolution matrix (which he calls 'delta vectors'). These vectors 
should indicate the locations of well-determined components 
of the model (see also Bube & Langan 1995). 

Rather than plotting arbitrary columns of the large 
resolution matrix, one could calculate a function of the matrix 

'9  

10 15 

columns of Q*Q (dimensionless) 
rows of WQ (dimensionless) 0 0  

Figure 16. The dot product of the Lanczos matrix with itself for 
Experiment 1 after 30 iterations of the combined conjugate gradient- 
Lanczos algorithm. 
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Figure 17. Graph of the spread of the resolution matrix for 
Experiment 1. The solid line corresponds to the spread for the P-wave 
impedance reflectivity estimate. The dashed line describes the spread 
for the S-wave velocity reflectivity. The dotted line is the spread for 
the P-wave velocity divided by density reflectivity. 
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Figure 18. The estimated anisotropic source from the linear source 
reflectivity inversions, where only every fourth trace is shown for 
clarity (Experiment 2). 

termed the resolution spread (Backus & Gilbert 1968). One 
example is the spread function: 

Unfortunately, this function is attempting to convey a large 
amount of information in a single number, and is easily 
corrupted by lack of information in some parts of the model 
domain or by noise in the data. Another choice is the 
vector-valued spread function: 

n 1 (i-j)’R$ 

S p , =  j=l (11) 
f : R $  . 
j=1 

The idea behind both the scalar and vector-valued spread 
functions is to weight more heavily the parts of the model 
estimate derived from averaging the true model over wide 
intervals. The points on the resolution-spread curve closest to 
zero are the best-resolved depths. 

I show various comparisons of resolution spread. Fig. 17 
overplots the resolution spread for each of the three reflectivities 
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Figure 19. Difference between actual and predicted data obtained 
from inverting for reflectivities and an anisotropic source 
(Experiment 2). The misfit is plotted on the same scale as the 
actual data. 
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Figure 20. Comparison of the independent well-log measurement of 
the relative short-scale fluctuation in the P-wave impedance with the 
result of inversion done on CMP6 using an anisotropic source estimate 
from inversion (Experiment 2). The solid line shows the inversion 
result (scaled and shifted left 44ms). The dashed line shows the 
detrended well log. Both graphs have been plotted as a function of 
two-way time and filtered to match the frequency content of the source. 

estimated in Experiment 1. These curves give little information 
(increase rapidly) at the water bottom (500 m depth), where 
there is no information in the data. At depths below the target 
(2100-2200 m), noise in the data also renders the spread curves 
unreliable. Nonetheless, one can use this graph to compare 
the resolution for the three different parameters estimated in 
one inversion experiment. The normalization of the spread 
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Figure 21. The approximate eigenvalues of the normal operator for 
the reflectivity inversion with an inversion-estimated anisotropic source 
(Experiment 2). The errors in the eigenvalues are shown as error bars. 
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Figure 22. The relative error in the approximate eigenvalues of the 
normal operator for the reflectivity inversion with an anisotropic 
inversion-estimated source (Experiment 2).  

function prevents the P-wave impedance resolution (the part 
of the resolution matrix with largest norm) from overpowering 
the resolution information from the other two parameters. 
Fig. 24 plots the same spread functions for the three reflectivi- 
ties estimated in Experiment 2. Fig. 26 compares the resolution 
spread for the P-wave impedance reflectivity for Experiment 1 
(dashed line) and Experiment 2 (solid line). Fig. 27 is a graph 
of the same resolution comparison for the S-wave velocity 
reflectivity. Finally, Fig. 28 compares the resolution spread for 
the third elastic parameter in the inversion (P-wave velocity 
divided by density reflectivity). One notes that in all three of 
these graphs, the interval of interest (1000-2300 m depth) is 
better resolved in Experiment 2 (reflectivity estimation using 
the inversion-estimated source) than in Experiment 1 (air-gun 
source experiment). At the target, however, the air-gun source 

Figure23. The dot product of the Lanczos matrix with itself for 
Experiment 2 after 30 iterations of the combined conjugate gradient- 
Lanczos algorithm. 

-0 500 1000 1500 2000 2500 3000 
depth ( rn )  

Figure24. Graph of the spread of the resolution matrix for 
Experiment 2. The solid line corresponds to the spread for the P-wave 
impedance reflectivity estimate. The dashed line describes the spread 
for the S-wave velocity reflectivity. The dotted line is the spread for 
the P-wave velocity divided by density reflectivity. 

does slightly better than the inversion-estimated source. These 
resolution-spread pictures agree with the well-log comparisons 
shown in Figs 13 and 20. The inversion-estimated source tends 
to do a better job of agreeing with the well logs over the depth 
domain of interest. However, at the target, the air-gun source 
does a reasonable job of matching the well-log. (For complete- 
ness, I included Figs 12 and 19, which show the misfit between 
the actual and predicted data for the two real data experiments.) 

CONCLUSION 

Since measuring tools and computational discretization pro- 
vide limited data about the subsurface, the inversion process 
cannot generally return model estimates which are the true 
parameters that generated the data. The singular value 
decomposition of the forward (seismogram) model and gen- 
eralized inverse (in theory) allow us to quantify to what extent 
the model estimates are localized averages of the true model 
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Figure 25. Three selected columns of the resolution matrices for the two experiments. The top two graphs correspond to a depth of 1045 m. The 
middle two graphs are the column of the resolution matrices corresponding to 1445 m. The bottom two graphs correspond to depth 2185 m (a 
region between where the two experiments place the targets). In each pair, the top graph corresponds to Experiment 2 (reflectivity estimation with 
the anisotropic inversion-estimated source). The bottom graph corresponds to Experiment 1 (reflectivity estimation with the air-gun model source). 
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Figure26. The graph of the resolution spread for two estimates of 
the P-wave impedance reflectivity. The solid line corresponds to 
Experiment 2; the dashed line, to Experiment 1. 

parameters. The smaller the averaging interval (for example in 
depth) of the model estimates, the better the resolution. A 
number of papers were written on this subject in the late 1960s 
and early 1970s, when it seemed a promising tool. More 
recently, the prohibitive nature of these computations has 
prompted a number of authors to suggest ways to approximate 
the model resolution matrix for large (realistic) inverse prob- 
lems. I present one of these methods in this paper: solve the 
least-squares inverse problem for the reflectivities using the 
conjugate gradient algorithm and simultaneously estimate 

1°1 

I 
I 

00 
depth (rn) 

Figure27. The graph of the resolution spiead for two estimates of 
the S-wave velocity reflectivity. The solid line corresponds to 
Experiment 2; the dashed line, to Experiment 1. 

some of the eigenvalues and eigenvectors of the normal matrix 
by the Lanczos procedure. The estimated eigenvectors are used 
to form the approximate resolution matrix. I applied this 
technique to a small synthetic test case which indicated that 
the approximation is most accurate near large data events. I 
then applied this process to two field-data reflectivity experi- 
ments with different sources. The resulting resolution-spread 
curves agree with well-log comparisons and imply that reso- 
lution defined in this way could be useful for ranking inversion- 
estimated models when well-log information is not available. 
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Figure28. The graph of the resolution spread for two estimates of 
the P-wave velocity divided by density reflectivity. The solid line 
corresponds to Experiment 2; the dashed line, to Experiment 1. 
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APPENDIX A: VISCOELASTIC MODELLING 

We model the Earth as a layered viscoelastic medium and use 
a convolutional approximation for pre-critical reflections of 
viscoelastic plane waves. We do not give the full derivation of 
the convolutional approximation here. It is closely related 
to the description of elastic plane waves in Aki & Richards 
(1980, pp. 153-155). For related experiments see Minkoff & 
Symes (1996). 

The mechanical parameters in the model include the density, 
p ,  the shear and compressional wave velocities, us and up ,  
and the shear and compressional quality factors, qs and qp. 
The time-dependent, anisotropic source is assumed to have, 
approximately, point support. 

The parameters in our model vary only with depth, z = x3. 
Thus we can apply the Radon integral transform (or plane- 
wave decomposition) to the solution of the viscoelastic wave 
equation (and to common-midpoint gathers of the data) to 
reduce the 3-D model to a family of 1-D models (Treitel et al. 
1982). In effect, we have synthesized incident plane-wave ‘shot’ 
records parametrized by slowness, p ,  and by midpoint. The 
plane-wave approach is justified by the fact that the reflection 
angles of interest for inversion were well sampled by the 
recording arrangement for the frequencies produced by the 
source. For typical marine acquisition geometry, Brysk & 
McCowen (1986) explained how the 3-D transform can be 
applied to common-midpoint gathers. 

Neither mode conversion nor multiply reflected energy 
appears to be important in the data set used for the experiments 
(probably because of the soft water-bottom materials in 
this part of the subsurface). Thus we were able to assume a 
primaries-only, or single-scattering, approximation. The mech- 
anical parameters are separated into the long-wavelength 
(smooth) background velocities and density, up, us, and p, and 
short-wavelength relative perturbations of these parameters 
(reflectivities) r p  = 6vp /vp ,  rs = 6vs/u,, and rD = 6 p / p .  High- 
frequency asymptotics leads to the convolutional model 
prediction of the P-wave seismogram (Beylkin 1985): 

P I e d (  4 P) = f( t ,  P)* q t ,  PI. (‘41) 
In the above expression, Ped is the seismic data predicted by 
our model, f the source wavelet; p denotes slowness, and t 
time. The ‘*’ symbol is convolution in time. 

The source wavelet is anisotropic, i.e. slowness-dependent. 
A convenient representation is a Legendre series in p (which 
also regulates the extent of its anisotropy): 

f(t> P) = 1 f;(t)Li(p), 642) 

where L, is the ith Legendre polynomial (Abramowitz & 
Stegun 1965). 

The time-slowness-domain reflectivity P is a linear 
combination of the elastic reflectivities r p ,  rs and rD: 

N 

,=0 

?(t, p )  = W A P k  t ,  p ) r p ( z )  + A s k ,  t, p)rs (z )  + A d z ,  t, p)rD(d]. 

(‘43 1 
s 

The geometric optics P-P reflectivity kernels A,, As, A ,  are 
(for j = P, S, or D) 

iw(t - ~ T ( z ,  p ) )  - 101 

The P-wave attenuation factor at slowness p is 

1 
a(z, p )  = (A10) 

The temporal frequency variable is denoted w; zo is the source 
depth, and QP is the P-wave quality factor. The reference 
frequency wo calibrates the (frequency-dependent) velocity. 
Waves at frequency wo move with the P-wave velocity u p .  The 
form of the exponent in the integral expression (A4) follows 
Aki & Richards (1980, p. 182, display (5.88)). 

The integrals described above are approximated by the 
trapezoidal rule in the modelling code. For use in the opti- 
mization, both the linearizations of the above expressions and 
their adjoints are required. These are computed by applying 
first-order perturbation theory to the discretized integral 
transforms. 

APPENDIX B: INVERSION 

The predicted seismic data &’Ied is linear in each of the 
parameters f (the seismic source) and r,, rs, rD (the elastic 
reflectivities). It is very non-linear in the P-wave velocity u p .  
Although we did perform an initial inversion for the long- 
wavelength portion of the P-wave velocity (Fig. lo), we will 
not discuss that experiment in this paper (see instead Minkoff 
& Symes 1996). It is fixed in both the experiments described 
in this paper. The predicted seismogram also depends on the 
(background) S-wave velocity us and density p, and on the 
quality factors Q p  and Q,. We have assumed here that us and 
p are known with sufficient accuracy from logs and regional 
relationships which hold on the average over long scales. 
The quality factors were estimated by roughly matching the 
rate of energy decay in the data with predictions from log- 
derived synthetics. Instead we focus on inverting for the source 
(Experiment 2) and three elastic parameter reflectivities 
(Experiments 1 and 2) .  

The basic inversion principle is Output Least Squares (or 
OLS). This method requires that we adjust the inversion 
parameters rp ,  rs,  rD and f to minimize the mean-squared 
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error 

where dabs( t, p) is the ‘observed‘ p-7 data, and y ( t ,  p )  is a 
conditioning weight factor. The conditioning factor y (  t, p )  
enhances the resolution of deeper events. The desired outcome 
of conditioning permits considerable freedom in the design of 
the weight. We have used 

where t = t(z, p )  in this formula. In the elastic limit where 
Q p  -+ co, y = 1. Thus y is a model-based gain. 

The elastic reflectivities and source parameters together have 
a non-linear (bilinear) influence, so quadratic minimization 
algorithms cannot be used directly in Experiment 2. Instead, we 
used a method known as coordinate search or alternation. This 
method of simultaneous inversion for source and reflectivities 
was introduced in the paper by Minkoff & Symes (1995). We 
will hereafter refer to a ‘round of alternation’ as one pass 
through the four steps of the following algorithm. 

Repeat until convergence: 
(1) Given the current source, A, and current reflectivity, r,, 

(2) Replace r, by r +  . 
(3) Given the current source and reflectivity guesses, A, r + ,  

invert for a new estimate of the reflectivity r ,  . 

invert for a new estimate of the source f +  . 
(4) Replace A by f+ . 

Alternation, although notoriously inefficient, is attractive for 
initial experiments because it requires only successive solutions 
of simple linear least-squares problems. Obviously, quasi- 
Newton methods could be applied to the problem and would 
probably reduce the number of iterations dramatically. While 
further algorithmic development for source-reflectivity inver- 
sion is definitely needed, we were able to obtain a reasonable 
result in Experiment 2 with only two rounds of alternation. 

APPENDIX C: SEISMIC FIELD DATA- 
GEOMETRY O F  THE GEOPHYSICAL 
EXPERIMENT A N D  PREPROCESSING 

The data used in this work were derived from a marine survey 
in the Gulf of Mexico. The survey line consisted of 511 shots 
recorded with 301 hydrophone groups. The group interval was 
15 m with a minimum source-receiver separation of 148 m. 
The shot interval was 22.5 m. Each group contained 17 equally 
spaced and equally weighted hydrophones. The data were 
recorded without a low-cut filter. A 110 Hz high-cut filter was 
applied. The sampling rate was 2ms, and the total record 
length was 5 s. 

This area of the Gulf contains a strong gas-sand-related 
direct hydrocarbon indicator at about 2.3 s. The stack shows 
this target horizon to be embedded in a sequence of nearly 
horizontal strata, beginning at roughly 1.5 s (see Fig. 8). 
Therefore, layered medium modelling appeared to be a 
plausible tool for target-oriented inversion. Very little evidence 
of multiply-reflected energy appears above or near the target 
event, suggesting the viability of a primaries-only approach. 
Similarly, the apparent absence of mode-converted events 
justifies restriction of the propagation model to P waves. 

The data were Radon-transformed, respecting 3-D cylin- 
drical symmetry, to yield 48 plane-wave traces per midpoint 
gather. Slowness values range from pmin = 0.116 ms m-l to 
pm = 0.365 ms m-l. To remove diffraction artefacts originating 
in the shallow subsurface, the plane-wave data were time- 
migrated in the midpoint dip domain, and then modelled to 
Pmid = 0. This last step collapses diffractions while still pre- 
serving layered reflection amplitudes. While the diffracting 
structures are still visible in the upper 1.5 s, the diffraction tails 
are largely removed and no longer interfere with the lower, 
layered structure in the stack. The same is largely true of the 
pre-stack p-7 data (see Fig. 9). 

In order to lighten the computational burden of inversion, 
we performed our calculations on a low-pass filtered version 
of the p-t data, which resulted from convolving all the traces 
with a 15 Hz zero-phase Ricker wavelet. The numerical experi- 
ments described in this paper were performed on the single 
midpoint gather of filtered data (see Fig. 9) located near a 
logged well. We also filtered the corresponding air-gun model 
source. 
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