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SUMMARY

Monte Carlo techniques for seismic inversion are effective at
producing high-quality uncertainty information about model
parameters while reducing the number of assumptions re-
quired by non-stochastic full waveform inversion algorithms.
However, Monte Carlo techniques are computationally expen-
sive since they require repeated solution of the wave equation
for each proposed velocity model. One approach to reduce
the computational expense is two-stage Markov chain Monte
Carlo (MCMC), wherein a computationally inexpensive filter
is used to quickly reject unacceptable models. This filter re-
duces the number of models that must be tested using the full
fine-grid forward solver. Often, coarse-grid formulations of
the forward problems are used in the filter stage. We instead
use a neural network to replace the expensive computation of
the residual directly. In addition, we train the neural network
as part of the MCMC process, bypassing the need to gener-
ate separate training data outside of the MCMC process. We
find that the neural network two-stage MCMC (NNMCMC)
substantially reduces the time-per-trial and time-per-rejection
by 65% and 84%, respectively, when compared with the one-
stage MCMC. Furthermore, NNMCMC increases the accep-
tance rate to 86% from 29% over the one-stage MCMC.

INTRODUCTION

Markov chain Monte Carlo (MCMC) methods are employed
in seismic inversion to recover distributions of models that
fit observed data. Monte Carlo techniques avoid assumptions
of linearity between the model and the data (Sambridge and
Mosegaard, 2002) and do not impose restrictions on the shape
of the posterior distribution (i.e., uncertainty information) of
the model (Mosegaard and Tarantola, 1995). However, MCMC
techniques require testing tens of thousands to millions of mod-
els, and each model requires solution of the forward problem
to produce simulated data. Due to the large number of sam-
ples needed to construct uncertainty information, even a mod-
erately computationally expensive forward problem, such as
the 2D acoustic wave equation used in this paper, results in a
computationally infeasible algorithm (Higdon et al., 2011).

In traditional Metropolis-Hastings MCMC, 40% to 90% of the
proposed models are rejected and not used to characterize the
posterior distribution (Rosenthal, 2011). One way to reduce
computational expense is to sample the posterior distribution
more efficiently, thus requiring fewer solutions of the forward
problem and increasing the acceptance ratio (Frangos et al.,
2011). Two-stage MCMC reduces the number of models that
must be tested on the full forward problem by using a com-
putationally inexpensive filter to reject unacceptable models
(Christen and Fox, 2005; Efendiev et al., 2006). Efendiev et al.
(2006) and Ginting et al. (2011) use coarse-grid models as fil-
ters for subsurface flow problems. Stuart et al. (2016, in review

2019) apply the two-stage MCMC algorithm to seismic veloc-
ity inversion using operator upscaling as the coarse-grid filter
(see Vdovina et al. (2005) and Korostyshevskaya and Minkoff
(2006)).

In this work, we apply the two-stage MCMC algorithm to the
full waveform inversion problem with a novel filter—a neural
network. A neural network is a collection of interconnected
nodes with the ability to learn complex relationships between
input and output (Hastie et al., 2013; Strang, 2019). Röth and
Tarantola (1994) pioneered the use of neural networks in seis-
mic inversion by training a neural network to predict simple
layered Earth velocity models from shot gathers. Lewis and
Vigh (2017) used a convolutional neural network to predict
the position of salt bodies in order to construct a prior velocity
field for full waveform inversion. Araya-Polo et al. (2018) use
a deep neural network to predict velocity fields with simple
structures from raw seismic data.

The papers outlined above all use neural networks to directly
predict velocity fields from seismic data. However, in this
work we propose to use neural networks to predict the residual
necessary for the filter stage of the two-stage MCMC. By us-
ing this method, the MCMC inversion avoids one of the major
pitfalls of neural networks—the ignorance of the underlying
physics. In our method, any model that is accepted by the
neural network filter is then evaluated using the acoustic wave
equation before the model is used to characterize the poste-
rior distribution and compute uncertainty measures. Thus, we
avoid physically infeasible outcomes.

Neural network two-stage MCMC (NNMCMC) consists of three
phases:

1. Generate the training set of velocity field and residual
pairs with one-stage Metropolis-Hastings MCMC us-
ing operator upscaling as a fast wavesolver.

2. Train the Neural Network.
3. Proceed with two-stage MCMC using the neural net-

work filter.

To further reduce the computational cost of NNMCMC, we
use operator upscaling for the acoustic wave equation in place
of the full fine grid wave equation during the training set col-
lection phase. Operator upscaling is a physics-aware, highly
accurate surrogate for the acoustic wave equation which does
not require averaging the velocity field and can resolve sub-
wavelength heterogeneities (Vdovina et al., 2005; Korostyshevskaya
and Minkoff, 2006; Vdovina and Minkoff, 2008).

We find that the NNMCMC algorithm results in a 65% re-
duction in time-per-trial and an 84% reduction in time-per-
rejection over one-stage MCMC, including the time required
to generate the training set. In addition, the acceptance rate
in the NNMCMC increases to 86% from 29% in one-stage
MCMC. This substantial decrease in time required and increase
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Neural Network Sampling for Two-Stage MCMC

in acceptance rate indicates that neural networks are an effec-
tive filter in two-stage MCMC for velocity inversion.

THEORY

Bayesian Inversion

One way to enable uncertainty quantification in velocity inver-
sion is to approach the problem from a Bayesian perspective
(Tarantola, 2005). We invoke Bayes’ rule, which relates the
posterior distribution we are trying to determine to the likeli-
hood function (a measure of how well the simulated data given
a model matches the true data) multiplied by the prior distribu-
tion of the model (what we think about the uncertainty of the
model parameters before simulation). Bayes’ rule states

P(θ |d) ∝ P(d|θ)P(θ) (1)

where P(θ |d) is the posterior distribution of the model, P(d|θ)
is the likelihood function, and P(θ) is the prior distribution of
the model (Gelman et al., 2013).

In this work we assume a Gaussian likelihood function and a
uniform prior distribution. The likelihood function is

P(d|θ) = exp
(
‖F (θ)−d‖
−2σ2 ‖d‖

)
(2)

where F (θ) the the simulated data, d is the observed data,
σ is a user-prescribed precision parameter related to the noise
level in the data, and ‖·‖ is the L2 norm.

Two Stage Markov Chain Monte Carlo

While computationally inexpensive deterministic solutions to
Bayesian-formulated inverse problems exist, they require sig-
nificant assumptions on the shape of the posterior distribution
(e.g., the posterior distribution is Gaussian) (Tarantola, 2005).
To avoid this assumption, we employ stochastic MCMC meth-
ods. MCMC techniques are designed to sample from a pos-
terior distribution by constructing a Markov chain with the
posterior distribution as the chain’s equilibrium distribution
(Brooks et al., 2011).

However, this process requires testing tens or hundreds of thou-
sands of velocity fields to estimate the posterior distribution.
For every proposed velocity field, we must compute the likeli-
hood function (Equation (2)) which requires solution of the
wave equation, F . Unfortunately, the majority of velocity
models are rejected after data simulation and not included in
the estimation of the posterior distribution. Two-stage MCMC
reduces the computational expense of MCMC by employing a
computationally inexpensive filter to quickly reject unaccept-
able velocity models (Christen and Fox, (2005); Efendiev et
al., (2006); Stuart et al. (2016); Stuart et al. (2019, in review)).

The two-stage MCMC algorithm:

1. Model Generation: Generate a velocity field proposal
θ ′ from the proposal density q(θ ′|θn) where θn is the
previously accepted velocity model.

2. Filter: Determine the velocity field proposal for the
fine grid step, θ , where

θ =

{
θ ′ with probability ρ(θn,θ

′)

θn with probability 1−ρ(θn,θ
′)

(3)

and

ρ(θn,θ
′) =

PF (θ
′|d)q(θn|θ ′)

PF (θn|d)q(θ ′|θn)
(4)

where PF (θn|d) is the posterior distribution using the
filter likelihood function.

3. Fine Grid: Update the next step in the Markov chain,
θn+1 with

θn+1 =

{
θ with probability ρ(θn,θ)

θn with probability 1−ρ(θn,θ)
(5)

where

ρ(θn,θ) =
P(θ |d)PF (θn|d)
P(θn|d)PF (θ |d)

. (6)

However, if θ ′ = θn in the filter step, then θn+1 = θn with
probability 1 in the fine grid step. Thus, the fine grid step can
be omitted when a new model is rejected on the filter. This
results in significant computational cost savings.

Operator Upscaling

To further reduce the computational expense of NNMCMC,
during the training set construction phase we replace the fine
grid computation with operator upscaling for the acoustic wave
equation. Operator upscaling is an accurate approximation
of the acoustic wave equation that can capture fine-scale het-
erogeneities in the velocity field (Vdovina et al., 2005). Due
to significantly decreased communication between processors,
operator upscaling reduces the computation time of solving the
wave equation by approximately 45% (Stuart et al. (2019, in
review)). In operator upscaling, the domain is decomposed
into coarse grid and a fine grid within each coarse block.

The operator upscaling algorithm proceeds in four steps:

1. Solve for fine-grid unknowns in each coarse grid block.
No communication between processes occurs at this
stage.

2. Using the fine-grid solutions, solve for the coarse-grid
unknowns in each coarse block.

3. Communicate only the coarse-grid unknowns to each
adjacent process.

4. Repeat for the next time step.

See Vdovina et al. (2005), Korostyshevskaya and Minkoff (2006),
Vdovina and Minkoff (2008), and Stuart et al. (2019, in re-
view) for details on operator upscaling derivation, implemen-
tation, convergence, and timings.

Neural Network Two-Stage MCMC

A neural network consists of layers of interconnected nodes
containing a weighting value and a nonlinear activation func-
tion. Each layer takes input from the preceding layer and pro-
duces output for the next layer by taking linear combinations
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Neural Network Sampling for Two-Stage MCMC

Figure 1: Left: The recorded well log p-wave velocity (blue)
and nine-layer blocking (orange). The well log is courtesy
of Pioneer Natural Resources. Right: The reference velocity
generated from the well log. The red x’s mark the line of 20
sources. The green triangles show the vertical receiver array.

of the weighted activation functions (Hastie et al., 2013). The
training process updates the weights of each hidden node by
minimizing the misfit between the training outcome associated
with a given model and the outcome predicted by the neural
network.

In this work, we use a neural network to compute the likeli-
hood function in the filter posterior distribution. In the filter
posterior distribution, the filter likelihood function is then

PF (d|θ) = exp

(
−N (θ)

2σ2
F

)
(7)

where N (θ) is the neural network prediction of the residual
norm (see Equation (2)).

We modify the two-stage MCMC algorithm to include gen-
erating the training set and training the neural network. The
two-stage neural network MCMC algorithm (NNMCMC):

1. While n < N, where n is the number of velocity fields
tested and N is the desired number for the training set,
perform the Metropolis-Hastings MCMC algorithm with
operator upscaling as the forward solver. The tested
velocity models and residuals computed via operator
upscaling form the training set.

2. Train the neural network using the training set gener-
ated in Step (1).

3. Perform the two-stage MCMC algorithm with neural
network filter.

NUMERICAL EXPERIMENT

We demonstrate NNMCMC on a flat-layered model derived
from a real well log from the Midland Basin. We block the
well log into nine layers (see Figure 1) and assume the inter-
face positions are known (i.e., we will invert for the velocity
values within the layers only). This simple experiment pro-
vides compelling evidence that NNMCMC is worth further in-
vestigating on more complex models. The computational do-
main is 1024 m in x and 1024 m in z, with 1 m grid spacing
and a 160 m absorbing boundary on all sides. The acquisi-
tion geometry contains a line of 20 sources along the top of

Figure 2: Left: the initial velocity field with known layer inter-
faces marked with black dashed lines. Center: The true veloc-
ity field. Right: the velocity field constructed from the median
of the posterior distribution.

Figure 3: Relative residuals for data computed via operator
upscaling for 1000 velocity fields, ‖FOU (m)−d‖/‖d‖, vs.
the relative residual predicted by the neural network.

the computational domain (red x’s in Figure 1) and a vertical
array of 512 receivers in a well at the left side of the compu-
tational domain (green triangles in Figure 1). Each source is a
20 Hz Ricker wavelet in time and a point source in space.

For the two-stage MCMC algorithm, we set both the filter
and fine grid likelihood precision parameters (σF and σ in
Equations (7) and (2), respectively) to 0.05. To construct the
posterior distribution, we tested 37,000 velocity fields in one
Markov chain and removed the first half of the chain as burn-
in to reduce the impact of the starting velocity model on the
posterior distribution (Gelman et al., 2013). We observe that
the chain has converged to a steady state due to the stability of
the posterior distribution estimates (not pictured). We assume
our initial velocity field is constant-velocity with known layer
interface positions (see Figure 2, left).

Neural Network Construction

We train the neural network on the first 10,000 velocity field
samples of the Markov chain. For the 10,000 initial samples,
we use operator upscaling in lieu of the fine grid wavesolver.
To construct the neural net, we use the Tensorflow Python li-
brary (Abadi et al., 2016). We use a feed-forward neural net-
work with three layers of 32 nodes each with Rectified Linear
Units (ReLU) activation functions. We used 20% of the data
for validation and trained the neural network using Adam op-
timization (Kingma and Ba, 2014). Figure 3 (right) demon-
strates that the norm of the relative residual predicted by the
neural network is very well correlated with the norm of the
relative residual computed using operator upscaling, indicat-
ing that the neural network is a good filter for the two-stage
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Neural Network Sampling for Two-Stage MCMC

Figure 4: Top: the posterior distribution kernel density esti-
mates for each layer velocity. Bottom: a one-dimensional slice
of the initial velocity field (blue solid line), true velocity field
(orange solid line), and median velocity field (green dashed
line). The shaded regions in the bottom plot show the 90%
HPD intervals for each layer. The color of each HPD interval
on the bottom plot corresponds with the same colored posterior
distribution on the top plot.

MCMC process and captures the physics well.

Inversion Results

Figure 2 compares the velocity field generated by the median
of the posterior distribution (right) with the initial velocity field
(left) and true velocity field (center). We see that the median
velocity field matches the true velocity field very well. Figure
4 (bottom) shows a one dimensional slice of the median veloc-
ity field (green dashed line), true velocity field (orange solid
line), and initial velocity field (blue solid line). In addition, we
display the uncertainty information for each layer using a 90%
highest posterior density (HPD) interval with shaded regions
of various colors. Figure 4, top, shows the corresponding pos-
terior distributions for each layer. The deepest layers (yellow
and grey HPD intervals) and the narrowest layers (orange, red,
brown, and pink HPD intervals) have the largest uncertainties
and the broadest posterior distributions, whereas the shallow-
est layer (blue HPD interval) and the largest layer (purple HPD
interval) have the narrowest HPD intervals and posterior dis-
tributions.

Timings

To determine the computational efficiency of the neural net-
work two-stage MCMC algorithm, we will compare the time
per velocity field tried and time per velocity field rejected for
the neural network two-stage MCMC to the standard one-stage
MCMC. The timings reported in Table 1 include generating the
training set and training the neural network for the NNMCMC.
In Table 1, we find the neural network two-stage MCMC re-

Standard
Metropolis
Hastings

NNMCMC
Percent
Reduction

Seconds
per Trial

10 3.52 65

Seconds
per Rejection

10 1.58 84

Acceptance
Ratio

0.29 0.86 N/A

Table 1: A comparison of the time per trial, time per rejec-
tion, and acceptance rate for the NNMCMC vs the one stage
MCMC. All times for the NNMCMC include generating the
training set and training the model.

duces the time per velocity field tried by 65%, from 10 s to 3.5
s, and reduces the time per velocity field rejected by 84%, from
10 s to 1.6 s due to the negligible cost of evaluating a model
on the neural network. The time per velocity field rejected in-
cludes both models rejected on the filter and models rejected
on the fine grid.

We define the two-stage acceptance ratio as the proportion
of velocity models accepted on the fine grid (Step (3) in the
two-stage MCMC algorithm) to the number tested on the fine
grid (i.e., accepted in the filter stage) (Christen and Fox, 2005;
Efendiev et al., 2006). The acceptance rate increases from 29%
for one-stage MCMC to 86% for the neural network two-stage
MCMC.

CONCLUSION

In this paper, we introduced a novel sampling strategy, and
demonstrated the efficacy of the NNMCMC algorithm for ve-
locity full waveform inversion on a flat-layered velocity model
derived from a real well log. In NNMCMC, we used a neu-
ral network trained to predict residuals from velocity fields as
an inexpensive filter. The neural network is trained on veloc-
ity field and residual pairs generated with a physics-based op-
erator upscaling solver. We find that the algorithm gives the
expected uncertainty information for a substantially reduced
computational cost. The NNMCMC algorithm reduced the
time needed to try or reject each velocity model by 65% and
84%, respectively, while simultaneously increasing the accep-
tance ratio from 29% to 86%. Therefore, the NNMCMC algo-
rithm is an effective and computationally efficient replacement
for standard Metropolis-Hastings MCMC.
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