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SUMMARY

Accurate numerical simulation of complex hydraulic fractur-
ing involves large numbers of model parameters. These param-
eters are uncertain as they are at best recorded in a few logged
wells. Such simulations and subsequent estimation of micro-
seismic events allow characterization of the nature and extent
of the hydraulic fracture network. However, as one example
of the way in which uncertainty affects our knowledge of the
hydraulic fracturing process, errors in the microseismic event
locations can be on the order of many meters. Moreover, es-
timating statistical uncertainty information about the output is
computationally prohibitive for full multiphysics model sim-
ulations. To investigate new strategies for uncertainty quan-
tification, we consider a simple model of two-way, loosely
coupled single-phase fluid flow and linear elastic mechanical
deformation. Loose coupling allows leveraging of significant
development efforts common in more sophisticated flow and
mechanics simulators. Active subspace strategies determine
the most influential parameters in the model and rank these
parameters in terms of their impact on simulator output. Once
these parameters have been identified, inexpensive emulators
which interpolate between simulation data points can be de-
veloped such as partial parallel emulators which can approx-
imate spatially varying model output rapidly. In this study,
two-way loose coupling uses fluid pressure output as a load on
mechanical deformation, and updates for flow parameters such
as porosity result from strain changes in mechanics. Our ac-
tive subspace strategy finds that the coupling is essentially one
way. Only the flow parameters impact the fluid pressure output
whereas input parameters to both fluid flow and mechanics are
important for the displacement. The emulator accurately in-
terpolates the pressure and displacement data and will enable
future studies that quantify the impact of uncertain input pa-
rameters and changing coupling terms (e.g. porosity) on the
simulator output.

INTRODUCTION

Accurate numerical simulation of complex hydraulic fracturi-
ing involves large numbers of model parameters (McClure and
Horne (2011); McChesney et al. (2016)). These parameters are
often uncertain due to sparse geologic measurements recorded
in a small number of wells in the field. This uncertainty in the
subsurface description propagates beyond the fracture mod-
eling itself into estimation of microseismic events which are
important for characterizing the nature and extent of the hy-
draulic fracture network (Maxwell (2014); Kaderli et al. (2018,
2015)). Often these microseismic event locations are inaccu-
rately estimated by tens of meters or more. To better numer-
ically model such a complex process it is imperative that the
simulation produces more than a single deterministic solution.
Error bars or confidence intervals allow us to quantify the faith
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we have in the simulation results. Unfortunately the curse of
dimensionality severely restricts our ability to determine this
statistical information for complex simulations. One method
for estimating uncertainty is to determine which of the large
number of model parameters has the most influence on the re-
sulting solution or quantity of interest. Then a simpler surro-
gate or reduced order model can be used to develop statistical
information about the solution by performing simulations us-
ing only these influential parameters (Smith (2013); Constan-
tine (2015)). While the state of the art uncertainty quantifica-
tion (UQ) strategies are in heavy use in fields such as climate
modeling (Pachauri et al. (2014)) and some engineering appli-
cations, these techniques have not yet become common prac-
tice in the broader geoscience community. While there are few
examples in the literature of applying these UQ ideas to explo-
ration and production studies, Narasingham et al. (2017) use a
global optimization algorithm applied to partition the time do-
main into clusters where snapshots contained within the cluster
exhibit similar behavior. Then they apply a proper orthogonal
decomposition to the solution snapshots within each cluster
to capture the dominant spatial characteristics of the solution.
The resulting basis functions allow them to derive ODE sys-
tems that are reduced models describing the dominant dynam-
ics of the original nonlinear PDE’s. They apply this idea to hy-
draulic fracture simulation but assume that the rock properties
do not change with respect to time or space. In Siddhamshetty
et al. (2018) the authors develop a new technique which inte-
grates analytic models with data-based reduced order models
for different parts of the hydraulic fracturing process.

Employing UQ strategies for multiphysics modeling (coupled
process modeling) is a daunting challenge. As a first step to-
wards the goal of understanding how best to quantify uncer-
tainty for hydraulic fracturing, we examine a simpler model of
coupled fluid flow and mechanical deformation, namely, 1D
single-phase fluid flow and linear elastic deformation in a ver-
tical column of mud (Terzaghi and Peck (1948); Minkoff and
Kridler (2006)). We make use of a loose coupling algorithm
that is relevant whenever one wants to leverage significant de-
velopment efforts that have gone into sophisticated numerical
simulation codes without having to resort to numerous simpli-
fying assumptions required of fully coupled models (see Dean
et al. (2003); Minkoff et al. (2003, 2004); Kim et al. (2011)).
Specifically in this work we use two-way loose coupling to
simulate fluid flow for a fixed set of times, passing the change
in pore pressure to the mechanical deformation simulator. The
mechanics code uses this pressure change as a load and outputs
stresses and strains that lead to updated dynamic flow features
(specifically porosity which changes due to compaction). This
process then repeats for subsequent time steps. This model
illustrates a key challenge: determination of influential input
parameters and parameter-dependent features when these fea-
tures can change during simulation. Active subspace strategies
quantify which input parameters are the most influential and
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allow us to rank these influential parameters. For flow we find
only the flow parameters seem to be influential while for me-
chanics both flow and deformation parameters are important.
Developing a fast emulator allows us to determine statistical
information about the output. Although initial porosity does
not seem to impact the flow output, a dynamically changing
porosity does.

THEORY AND METHODS

Background on Coupled Flow and Deformation Modeling

We investigate methods for analyzing uncertainty in the con-
text of a simple 1D single-phase fluid flow and linear elastic
deformation model. The model described below is given in
detail in Minkoff and Kridler (2006) where various adaptive
time stepping strategies are compared for loose 2-way cou-
pling. We consider a thin body of soil, ie. a column of mud
which is 100 inches high, confined by smooth, impermeable,
rigid walls on all sides except the top surface. On the surface,
perfect drainage is possible, and a load is applied suddenly to
the column. The flow equation comes from conservation of
mass and Darcy’s Law and is given by

I(¢p), . _ k &p
Po—5, (x’t)_ﬁﬁ

(x,1) 1)

where we solve for the unknown pore pressure, p. The rate of
flow is inversely proportional to the fluid viscosity, u, and fluid
compressibility, c. The permeability of the medium is given by
k; po is initial fluid density, and ¢ is porosity.

For mechanical deformation we assume linear elasticity which
relates stress, O, to strain, €, via Hooke’s Law. Combining
equilibrium equations for displacement with Hooke’s Law re-
sults in the second-order differential equation for displacement
in 1D:
d*u
—(A+20)— = 1. 2

A+2p)—=f @)
Here u is the displacement, A and [i are the Lamé parameters
that describe the solid material, and the one dimensional strain
is defined as the derivative of displacement:

_du

= 3)

e(u)

To loosely couple these two models, we will consider the change
in pore pressure to be an external force for mechanics. Thus
we augment the right hand side of Equation 2 as follows:

d*u
pratl

The resulting volume strain €, calculated from solving Equa-
tion 4 and then post-processing via Equation 3, is used to up-
date porosity for the next set of flow time steps. The porosity
update formula is:

dp

—(A+R) - @
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with @ the initial porosity.
Active Subspaces: Overview

We begin by introducing the active subspace method for di-
mension reduction in mathematical models and for global sen-
sitivity analysis. The active subspace description given here
follows Constantine (2015).

Put simply, a subspace is a span of a set of vectors. In the active
subspace method, one seeks to identify a few important vectors
of the input parameters that capture most of the variability in
the model response /. This is a two-step process. First one
identifies these important combinations of input parameters.
Second one calculates an activity score for each input param-
eter to rank the parameters in their order of influence on the
model variability. In this context, the important parameters
are the ones that, when perturbed, influence the model output
more than others. In dynamical systems, the active subspace
at multiple snapshots in time can be used to construct a dy-
namic active subspace (Loudon and Pankavich (2017)). In this
work we consider the six input parameters for flow and defor-
mation, namely, Young’s modulus (E = 103 Ib/in?), Poisson’s
ratio (v = 0.3), permeability (k = 1.86 x 10! in/s), initial
porosity (@9 = 0.6), fluid compressibility (¢ = 1.2 x 1073 psi),
and fluid viscosity (1t = 5.6 x 1072 psi-s).

Let the model output / be a continuous function of the model
input parameters, x € 2~ C R™, h = h(x). We find the gradient
of the model with respect to each input parameter

T
oh oh x ] | ©

Vih(x) = [c?m(x)”axm

and construct the m x m covariance-like matrix C by taking
the outer product of the gradient with itself and computing the
average,

C =y (Vih)(Vih)Tdx. (M

Note that C is an m x m, positive semidefinite matrix, where m
is the number of input parameters to 4(x). The eigendecompo-
sition of C is given by

CZWAWT? A:diag(lla"'alm)a A’l Z ZlmZO, (8)

where W is the m x m orthogonal matrix whose columns are
the normalized eigenvectors of C.

Discovering the Active Subspace

We can estimate the active subspace using the following pro-
cedure. For our loosely coupled model, we let (x) = u(x,#;X)
for displacement and h(x) = p(x,#;x) for pressure.

1. Sample the input parameter space globally by choosing
N Latin Hypercube points in 2"

2. For each sample x;, evaluate Vyh;. (We will do this
twice for h, once for deformation and once for pres-
sure.)

3. Approximate

| N
~C = . AYA
CrC= E(Vxh.,)<vxh]) : ©)
j=
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4. Compute the eigendecomposition ¢ = WAWT .

Since C is positive semidefinite, it has a Cholesky decomposi-
tion, C = GGT. Then the last step is equivalent to computing
the singular value decomposition (SVD) of the matrix

A 1 R —
G =SV, Vihy] = WVAV. (10)

The singular values are equivalent to the square root of the
eigenvalues, and the left singular vectors are the eigenvectors.

We define the activity scores ¢ by,
n
= Awh, i=l...m, (11)
j=1

where 7 is the dimension of the active subspaces (considering
only 4; above some small threshold) and w;; is a component
of the eigenvectors (Constantine and Diaz (2017)). The eigen-
vectors are weighted by the eigenvalues to capture the relative
contribution of input parameters to the model response vari-
ability (Constantine and Diaz (2017)). The input parameters
are then ranked by importance according to the values of ¢.

Active Subspaces: Numerical Results
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Figure 1: Eigenvalues of matrix C at 20 seconds and midway
down the column (left) and the components of the first eigen-
vector corresponding to the first eigenvalue (right) in the (a)
flow model and (b) deformation model.

‘We demonstrate dimension reduction and global sensitivity anal-
ysis using active subspaces. We approximate A and W using
gradients. Then, we (1) estimate the reduced input dimension
via eigenvalue separation, and (2) calculate @ to rank the pa-
rameters by importance and identify parameters that are neg-
ligible in parameter studies. These results are summarized in
Figure 1.
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The simulation outputs u and p are evaluated at 100 Latin Hy-
percube points (N = 100) in 6-D input space (m = 6). The
vertical column of mud has 100 grid points in depth, x, and we
run 50 seconds of simulation time. The results below are for
data at a single snapshot of time (time = 20 sec) and at a single
point in space (depth = 50 in).
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Figure 2: Global sensitivity metrics ¢&¢ computed using three
active subspaces for the flow model (left) and five for the me-
chanics model (right).

The eigenvalues of the matrix C (A) and the components of
the eigenvector corresponding to the largest eigenvalue (W, 1)
are plotted in Figure 1. By identifying eigenvalues that fall
within the first two clusters (before the second large gap), we
can reduce the input dimensions to 3 active subspace dimen-
sions (n = 3) in the flow model (Figure 1a), and 5 in the defor-
mation model (Figure 1b). Activity scores ¢ are computed for
each input parameter and are displayed in Figure 2.

The ¢ values are then used to rank the parameters’ importance:
[k, 1, c, B, % %] in the flow model, and [V, E, c,k, i, %3] in the
deformation model. The & values suggest negligible ¢,, v and
E in the flow model, resulting in a reduced input dimension
of m = 3. Further, this indicates that variability in the flow
model is not influenced by parameters in the mechanics model.
In contrast, the mechanics model is most influenced by v and
E, but is still influenced by the flow parameters. This result
suggests, in the context of uncertainty quantification, that the
coupling is effectively one way from the flow model to the
mechanics model.

Statistical Emulators: Background

Statistical emulators or surrogates are, simply, statistical mod-
els of complex physical models. One typically employs sta-
tistical emulators when the computational expense of exercis-
ing a physical model is high. Once a statistical emulator is
constructed, evaluating it and approximating the true physi-
cal model is computationally “free”. Emulators are particu-
larly useful if a large number of model evaluations are de-
sired e.g. for numerical integration (including Monte Carlo),
for MCMC simulations, for optimization, for validation, and
for calibration (Smith (2013); Bayarri et al. (2007)). The ad-
vantage of using statistical emulators over other approximating
schemes is that they interpolate the simulator output and offer
a built-in mechanism to quantify the added uncertainty of uti-
lizing an approximate model instead of the true model.

Often in uncertainty quantification the quantity of interest (QOI)
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is an integral of the form

EW) = [ epx)dx, ¥ =g(x), and X~ p(x)

where p is a probability distribution function describing uncer-
tain parameters, and g is a user defined function. If g represents
the output of a computational model, we just have the mean of
the computational model under p. Other common choices for g
are higher moments of the computer model, exceedance prob-
abilities, etc. The roadblock in any of these choices is that one
evaluation of g is an expensive computer model run. This ex-
pense motivates approximating the computer model (or func-
tional of the computer model), and we will do so with Gaus-
sian process emulators (GP) (Sacks et al. (1989); Santner et al.
(2003); Rasmussen and Williams (2006)).

To begin, we will assume that our computer model output is
a draw from a mean-zero Gaussian process. That is, y(x) =
1(x)+Z(x), where u is a mean trend (typically taken to be
constant or linear), E[Z] = 0, Var[Z] = 62, and the correla-
tion C(Z(x),Z(x')) is a function of the distance between x and
x’ (typical choices are the power exponential function or the
Matérn covariance functions (Gneiting et al. (2010)). In the
coupled flow-deformation model, we choose N = 100 design
points to construct GP emulators. Then we fit the correlation
function to the design points and resulting outputs by solving
an optimization problem to find the “best” correlation lengths
for each input dimension. Next, we calculate the correlation
between all design points and store those in an N X N ma-
trix R. Likewise, we also calculate the correlation between
an untested input value x* and each design point. We will call
this N vector r. At this point, we will take the output at design
runs to be either the deformation u(x, #;x) or pressure (p(x,;X)
at a single depth and time, and denote this output by y¥. We
can now construct a predictive mean and standard error (Sacks
etal. (1989)) to evaluate the GP at untested input values. These
are given by

5(¢) = () + TR (Y —p(x),  and

1R Ir
1"R- 11 )
respectively, where 1 is an NV vector of ones. (Note, this con-
struction was used to estimate deformation and pressure in the
active subspace selection, and approximate gradients were ob-
tained by taking finite differences of y.)

s2(x*) = 62(1 —r'R7r—

Parallel Partial Emulation of Pressure and Deformation

In the GP construction above, the output is taken to be scalar,
e.g. displacement or pressure at one depth and time. One could
fit emulators at each depth/time point of interest, but this pro-
cess becomes computationally unwieldy as an optimization
problem is required to find the set of optimal correlation pa-
rameters corresponding to each depth/time point. Instead, to
approximate the displacement, and pressure as a function of
depth, we will utilize the parallel partial emulator of Gu and
Berger (2016). The key idea is to find one common set of range
parameters for all of the functional output. This approach has
the added bonus of requiring only a single inverse of R at only
a modest computational expense over a scalar-output emulator.
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We fit parallel partial emulators (PPE) to displacement and
pressure at t = 30 s. To demonstrate performance of the PPE
we perform leave-one-out experiments. Thus we use N=99 de-
sign points, fit the PPE and use the predictive mean of the PPE
to approximate the left-out design point’s response. For both
displacement and pressure the error displayed at the bottom of
figure (3) are roughly three orders of magnitude less than the
scale of the output. This small error demonstrates the potential
for parallel partial emulation to be an effective tool for quanti-
fying uncertainty in coupled subsurface flows.

«107 Pressure
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Figure 3: For both displacement (left) and pressure (right) we
show output from the 100 design model runs (top), from the
PPE estimates of each (middle), and the error between true
model runs and the PPE (bottom).

CONCLUSIONS

Active subspaces reveal the important input parameters in each
of our two models (fluid flow and mechanical deformation).
Although we have a two-way coupled model, the flow model
does not depend on the mechanics parameters. This result
has interesting implications for uncertainty quantification — al-
though the models and numerical computations are coupled
via porosity, approximating the pressure is effectively inde-
pendent from approximating the deformation. This decoupling
can then be exploited in constructing statistical emulators that
enable rapid uncertainty quantification studies on both average
and extreme model behavior, and quantification of uncertainty
during validation and calibration studies.
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