Problem 1 – classical wave equation

a) Show that \(u(x,t) = \sin(kx - \omega t) \) satisfies the classical wave equation by directly using
the function \(\sin(kx - \omega t) \) in the wave equation.

b) Show that \(u(x,t) = \sin(kx - \omega t) \) satisfies the classical wave equation by using the
trigonometric identity \(\sin(A - B) = \sin A \cos B - \cos A \sin B \).

c) Show that \(u(x,t) = e^{i(kx - \omega t)} \) satisfies the classical wave equation by using the Euler
identity \(e^{i\theta} = \cos \theta + i \sin \theta \).

d) Show that \(u(x,t) = e^{i(kx - \omega t)} \) satisfies the classical wave equation by directly differen-
tiating the function \(e^{i(kx - \omega t)} \).

Problem 2 – different wavelength components

a) Show that \(u(x,t) = \sin(k_1x) \cos(\omega_1 t) - \cos(k_2x) \sin(\omega_2 t) \) is not a classical wave if
\(k_2 = 2k_1 \) and \(\omega_1 = \omega_2 \).

b) Show that \(u(x,t) = \sin(k_1x) \cos(\omega_1 t) - \cos(k_2x) \sin(\omega_2 t) \) is a classical wave if \(k_2 = 2k_1 \)
and \(\omega_2 = 2\omega_1 \). What is the propagation speed of this wave?

Problem 3 – Taylor series

For (a), (b), and (c) you can look up the answers using any resource.

a) Write down, up to (and including) 7th powers of \(x \), the Taylor series for \(\sin x \).

b) Write down, up to 7th powers of \(x \), the Taylor series for \(\cos x \).

c) Write down, up to 7th powers of \(x \), the Taylor series for \(e^x \).

d) Write down, up to 7th powers of \(x \), the Taylor series for \(e^{ix} \) by using your answer (c).

e) By comparing your answer (d) to the Euler formula \(e^{i\theta} = \cos \theta + i \sin \theta \) show how you
could identify the \(\sin x \) and \(\cos x \) Taylor series (assuming you didn’t know them).
Problem 4 – Schrödinger Equation

For a particle in free space \((V = 0)\), the angular frequency \(\omega\) and the wave number \(k\) of its associated wave function are related by

\[
\hbar \omega = \frac{\hbar^2 k^2}{2m} \tag{1}
\]

a) Verify that, if a monochromatic wave of the form \(\psi = e^{i(kx - \omega t)}\) is substituted into the Schrödinger time dependent equation (also called the Schrödinger wave equation), the above relation is reproduced.

b) Show that \(\psi = \cos(kx - \omega t)\) fails to satisfy the Schrödinger time dependent equation.