An NFR Pattern Approach to Dealing with Non-Functional Requirements

Presenter: Sam Supakkul

Outline
Motivation
The Approach
NFR Patterns
Pattern Organization
Pattern Reuse
Tool Support
Case Study
Conclusion

Authors:
Sam Supakkul
Tom Hill
Lawrence Chung
Thein Than Tun
Julio CSP Leite

The Univ. of Texas at Dallas
The Open University, UK
PUC-Rio, Brazil

Is it beautiful to you?
Dealing with NFRs involves many concepts and activities.
Some aspects of NFRs are achieved by mitigating known problems

- Security of credit card info
 - Break-in wireless network
 - Masquerade user login
 - Steal credit card info

- Trustworthiness
 - Password encryption
 - Biometric authentication
 - 2-factor authentication

- Cost

++ Make + Help -- Break - Hurt
Having insufficient knowledge of NFRs can lead to dire consequences

(2nd) Biggest credit card theft
- 45.7M credit cards stolen
- $20M in fraudulent transactions

TJX used security measures
- ID/password authentication
- Data encryption

But TJX did not know enough
- Potential security problems
- Applicable mitigations
- Proper tradeoff among NFRs

TJX unable to prevent the hacker
- 1. Break-in wireless network
- 2. Masquerade user login
- 3. Steal credit card info
Having sufficient knowledge of NFRs is difficult because NFR knowledge is

Difficult to capture
- Problems, solutions, domain
- Complete, correct
- Conceptual modeling and reasoning

Difficult to organize
- Cataloging knowledge
- Relating similar knowledge
 - General – Specific
 - Class – Instance
- Combining knowledge

Difficult to reuse
- Choosing appropriate knowledge
- (Re-)creating visual models
This talk presents a pattern-based approach to capturing, organizing, and reusing NFR knowledge.

Objective pattern

Problem pattern

Alternatives pattern

Selection pattern

Capturing

Organizing

Reusing

Tool support
4 kinds of NFR patterns for capturing different kinds of NFR knowledge

- **Objective pattern**
- **Problem pattern**
- **Alternatives pattern**
- **Selection pattern**

Capturing
An objective pattern captures a definition of an NFR as a softgoal (and sub-goals) to be achieved

An objective pattern

Name: FISMA Security Objectives

Credential
Sources: US FISMA Act of 2002
Authors: Sam Supakkul
Endorsements:
Known uses: US government agencies

Applicability (5W2H questions)
Domain (Who): Government
Topic (What): Information, data
Type (Why): Security
Phase (When): Requirements
Artifact (Where): World [per the WRSPM ref. model]
Application (How): Automated
Implication (How much): Regulation
Demo video:
applying an objective pattern

In the catalog

During the requirements engineering of a project

Tools used
The NFR Pattern Assistant (utdallas.edu/~supakkul/tools/NFRPassist)
The RE-Tools (utdallas.edu/~supakkul/tools/RE-Tools)
A problem pattern captures soft-problems or obstacles to achieving an NFR softgoal.
An alternatives pattern captures alternative means or alternative solutions with side-effect information

An alternative-solutions pattern
A selection pattern captures an application independent selection scheme

Weight-based quantitative selection

- **Trustworthiness [Security]**
 - Retina authentication
 - Fingerprint authentication

![Image](image_url)

- **w(!)=0.5**
- **w(+)=0.5**
- **w(++)=1.0**

Weight-based Selection = Highest cumulative weight

- weight(Fingerprint) = w(!Trust.) x w(+) + ...
- = 0.25 + ...

Widely used, but subjective

Rank-based qualitative selection

- **Trustworthiness [Security]**
 - Retina authentication
 - Fingerprint authentication

![Image](image_url)

- **r(++)!=6**
- **r(+)!=7**

Rank-based Selection = Best cumulative ranking

- rank(Fingerprint) = r(!Trust.) + ...
- = 7 + ...

Less subjective, but need a ranking scale
Demo video: applying a weight-based selection pattern

Before

After

Tools used
The NFR Pattern Assistant (utdallas.edu/~supakkul/tools/NFRPassist)
The RE-Tools (utdallas.edu/~supakkul/tools/RE-Tools)
Patterns may be organized along the generalization, aggregation, and classification dim.

- **Objective pattern**
- **Problem pattern**
- **Alternatives pattern**
- **Selection pattern**

Organizing:
- Generalization
- Aggregation
- Instantiation
- Classification
- Decomposition
- Specialization

Capturing

Reusing

Tool support
A specialized pattern captures more specific knowledge than that of the generalized pattern.

P1 specializes P2

[US FISMA Law] [Payment Card Industry]

\[P_1 \prec P_2 \]
The specialized pattern is more specific in breadth or in depth.

More specific in breadth

Payment Card Industry (PCI):
Security = Confidentiality

US Law:
Security = Confidentiality, Integrity, Avail.

More specific in depth

PCI concerned with Accountability beyond Privacy
A composite pattern assembles smaller patterns to capture a larger chunk of related knowledge.

P1 combines P2, P3, P4 where P2 succeeds P3 and P3 succeeds P4.

\[P_1 = P_2 \oplus P_3 \oplus P_4 \]

where \(P_2 \uparrow P_3 \) and \(P_3 \uparrow P_4 \)
A pattern can be used as a template to instantiate occurrence patterns

B1 is a binding specification
O1 is a specialization of M1 or O1 is sub-goal of M1 w.r.t. reference model R1

\[P_1 \leftrightarrow P_2 \]
where \(P_1 = \{ B_1, B_2 \} \odot R_1 \)
and \(B_1 = < M_1, O_1 > \) and \((O_1 \triangleright M_1 \land R_1 \) or \(O_1 \triangleleft M_1 \land R_1) \)
and \(B_2 = ... \)
Dealing with NFR knowledge is defined by 5 operations:

- Objective pattern
- Alternatives pattern
- Selection pattern
- Problem pattern
- Capturing

- Organizing
- Reusing
- Tool support
An action-oriented perspective

Pattern operations

Source Model → Pattern Catalog → Target Model

Pattern operations

specialize

compose

Pattern Catalog

apply

Example

Source Model

patternize

compose

Target Model

Example

Credentials

Applicability

Refinement Rules
We define 25 refinement rules for tool support.

- 2 for Objective, 8 for Problem, 10 for Alternatives, 5 for Selection.
Refinement rules are extracted by “patternize” and used for model transformation by “apply”.
The NFR Pattern Assistant for pattern support
The RE-Tools for knowledge modeling

StarUML

The NFR Pattern Assistant
The RE-Tools
StarUML extension framework

The NFR Framework
The i* Framework
KAOS
Problem Frames
UML

utdallas.edu/~supakkul/tools/NFRPassist
utdallas.edu/~supakkul/tools/RE-Tools
The approach and the tools have been applied to the TJX case.

Break-in wireless network
Masquerading user login
Steal credit card info

for Sample results

reuse knowledge from TJX in a different project

Build for reuse
Build with reuse

1 composite, 5 primitive

capture
reuse
Limitations (future work)

Tool/usability related
- Model elements not captured with the original position
- Pattern search and selection are currently manual
- Some knowledge not captured (need 2 more rules)
- Need to support more FRs and NFRs integrated knowledge
- Limited concurrently pattern sharing across groups

Approach related
- Costly and time-consuming to learn the notation and the tool
- Need more case studies
- Need to support dealing with NFRs during architecture/design
Summary: The difficulty of capturing, organizing, reusing of NFR knowledge can be alleviated by the approach

Difficult to capture
- Problems, solutions, domain
- Complete, correct
- Conceptual modeling and reasoning

Difficult to organize
- Cataloging knowledge
- Relating similar knowledge
 - General – Specific
 - Class – Instance
- Combining knowledge

Difficult to reuse
- Choosing appropriate knowledge
- Re-creating visual models

Features in the approach
- Objective, problem, alternatives, selection patterns
- Credentials
- Captured softgoal graphs
- By name, type, applicability
- Specialization, composition, instantiation
- Applicability info
- Refinement rules, tool support