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Abstract

Consider two absolutely continuous probability measures in the plane. A subdivision
of the plane into k ≥ 2 regions is equitable if every region has weight 1/k in each
measure. We show that, for any two probability measures in the plane and any
integer k ≥ 2, there exists an equitable subdivision of the plane into k regions using
at most k − 1 horizontal segments and at most k − 1 vertical segments.

We also prove the existence of orthogonal equipartitions for point measures and
present an efficient algorithm for computing an orthogonal equipartition.
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1 Introduction

Our investigation is motivated by recent equipartitions studied by Kano,
Kawano, and Uno [6]. Consider a finite set of red points and a finite set of
blue points on the grid Z2. A semi-vertical (semi-horizontal) segment consists
of two vertical (horizontal) line segments connected by a horizontal (vertical)
line segment of length one. A semi-rectangular chain consists of two segments,
one semi-vertical and one semi-horizontal, emanating from the same point.
They proved that, if both the number of red points and the number of blue
points is even, then there exists a semi-rectangular bisector avoiding red and
blue points, see Fig. 1.

In this paper we study orthogonal equipartitions of both continuous and point
measures. In the continuous case, we make some assumptions about the mea-
sures (that will be discussed in Section 2) to make proofs easier. For a measure
µ in the plane, we denote by µ(A) the µ-measure of a measurable set A ⊆ R2.
The main result is the following theorem.

Theorem 1 (Equitable orthogonal partition, continuous version) For
any integer k ≥ 2 and any two absolutely continuous (with respect to the
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(a)

Fig. 1. A semi-rectangular bisector of red and blue points on the plane.

Lebesgue measure) finite Borel measures µ1 and µ2 in the plane, there is a
subdivision of the plane into k regions R1, R2, . . . , Rk using at most k − 1
horizontal segments and at most k − 1 vertical segments such that, for every
i = 1, 2, µi-measures of all regions are equal, i.e. µi(Rj) = µi(R2)/k for all
j = 1, 2, . . . , k.

The special case for k = 2 is easy to prove by showing that two measures can be
simultaneously halved by an “L”-shaped bisector. The proof is similar to the
proof of the ham sandwich theorem in the plane [7] in the fact that it follows
from applications of the intermediate value theorem for continuous functions.
The difference is that the ham sandwich theorem guarantees a single line which
simultaneously bisects both the measures. The result for k = 2 is also related
to equipartitions of three measures using 2-fans [2; 4]. The bisector here can
be viewed as a 2-fan where the two semi-infinite rays are horizontal/vertical.

Fig. 2. An equitable orthogonal partition of 12 black points and 18 white points.
The partition into k = 6 regions uses 5 horizontal and 3 vertical segments.

For point measures we consider two cases: arbitrary point sets and points in
general position. In both cases we count points in the interior of every region.
For two arbitrary point sets S1 and S2 we show that the existence of a partition
such that the number of points from Si, i = 1, 2 in each region is bounded from
above by b|Si|/kc.
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Theorem 2 (Equitable orthogonal partition, discrete version) For any
integer k ≥ 2 and any set of n ≥ 1 red points and any set of m ≥ 1 blue
points in the plane, there exists a subdivision of the plane into k regions
R1, R2, . . . , Rk using at most k − 1 horizontal segments and at most k − 1
vertical segments such that the interior (open set) of every Ri, i = 1, 2, . . . , k
contains at most bn/kc red points and bm/kc blue points. If all n + m points
are in general position, then the subdivision has the property that the interior
of every Ri, i = 1, 2, . . . , k contains exactly bn/kc red points and bm/kc blue
points.

If the number of red/blue points is multiple of k then we have the following.

Corollary 3 For any kn red and km blue points in general position in the
plane, there exists a subdivision of the plane into k regions with at most k− 1
horizontal segments and at most k−1 vertical segments such that every region
contains n red points and m blue points.

Figure 2 illustrates such a subdivision. It should be noted that the horizontal
and vertical segments in Theorems 1 and 2 and Corollary 3 are not crossing,
i.e. the intersection of any two segments s1 and s2 is either the empty set or
a vertex of s1 or s2. The general position assumption in the second claim of
Theorem 3 can be weakened to the condition of distinct x-coordinates and
distinct y-coordinates of the points.

The orthogonality is not essential in Theorems 1 and 2. For any two linearly
independent vectors u and v in the plane, there exist equipartitions as in
Theorems 1 and 2 using line segments parallel to u and v. This can be shown
by changing measures using a coordinate transformation.

In Section 3 we prove the existence of a balanced partition of two measures
into two regions. It is used then to prove Theorem 1. In Section 4 we consider
point measures and follow the ideas from Section 1. We prove the existence of
a balanced partition in two cases: arbitrary point sets and points in general
position. Then we prove Theorem 2. We also show that an equitable orthogonal
subdivision can be computed in O((n + m) log k) time. Finally we discuss the
degenerate case of point layout and show the existence of a partition with
count as for points in general position.

2 Preliminaries

In this paper we assume that the continuous measures are absolutely con-
tinuous Borel probability measures in the plane. Following [2; 3] we make a
stronger assumption in the proof of Theorem 1 that the measures are nice, i.e.,
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the measures are absolutely continuous with respect to the Lebesgue measure
and such that any nonempty open set has a strictly positive measure. This
simplifies the proof and the restrictions can be justified using standard argu-
ments (measure approximation and compactness), see for example [2, Lemma
3.1] and [3].

The following combinatorial result is useful for partitioning measures into
many regions.

Theorem 4 ([5, Theorem 9]) For any map s : {1, 2, . . . , k − 1} → {±1},
there exists a pair (k1, k2) or a triple (k1, k2, k3) with sum k and the same signs
s(ki) such that all ki ≤ b2k/3c.

For an efficient computation, we need a slightly stronger result 1 .

Theorem 5 For any map s : {1, 2, . . . , k − 1} → {±1}, k ≥ 2, one of the
following holds

(i) There exists a pair (a, b) such that a + b = k, s(a) = s(b) and a, b ≤ b2k/3c.
(ii) There exists a triple (a, b, c) such that a + b + c = k, s(a) = s(b) = s(c) and

d(k − 1)/6e ≤ a, b, c ≤ b2k/3c.

PROOF. If k is even then the couple (k/2, k/2) satisfies (i). If k is multiple
of 3 then the triple (k/3, k/3, k/3) satisfies (ii). It remains to consider two
cases k = 6m + 1 and k = 6m− 1.

Case 1. Suppose that k = 6m + 1. Without loss of generality we assume that
s(2m) = −1.

Suppose that s(m) = s(m + 1) = · · · = s(2m) = −1 and s(2m + 1) =
s(2m + 2) = · · · = s(3m) = 1. If s(4m) = 1 then the couple (2m + 1, 4m)
satisfies (i). Otherwise, the triple (m, m + 1, 4m) satisfies (ii).

In the remaining case there is an i ∈ {1, 2, . . . ,m} such that

(a) s(2m − i + 1) = s(2m − i + 2) = · · · = s(2m) = −1 and s(2m + 1) =
s(2m + 2) = · · · = s(2m + i− 1) = 1, and

(b) s(2m− i) = 1 or s(2m + i) = −1.

If s(2m + i) = −1 then the triple (2m − i + 1, 2m, 2m + i) satisfies (ii). If
s(2m − i) = 1 and s(2m + i) = 1 then the triple (2m − i, 2m + 1, 2m + i)
satisfies (ii).

1 The algorithm in [5] computes 3-cuttings and Theorem 5 would be useful there.
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Case 2. Suppose that k = 6m − 1. The proof is similar to the above case.
Without loss of generality we assume that s(2m) = 1.

Suppose that s(m) = s(m + 1) = · · · = s(2m − 1) = −1 and s(2m) =
s(2m + 1) = · · · = s(3m) = 1. If s(4m− 1) = 1 then the couple (2m, 4m− 1)
satisfies (i). Otherwise, the triple (m, m, 4m− 1) satisfies (ii).

In the remaining case there is an i ∈ {1, 2, . . . ,m} such that

(a) s(2m − i + 1) = s(2m − i + 2) = · · · = s(2m − 1) = −1 and s(2m) =
s(2m + 1) = · · · = s(2m + i− 1) = 1, and

(b) s(2m− i) = 1 or s(2m + i) = −1.

If s(2m − i) = 1 then the triple (2m − i, 2m, 2m + i − 1) satisfies (ii). If
s(2m + i) = −1 and s(2m− i) = −1 then the triple (2m− i, 2m− 1, 2m + i)
satisfies (ii). 2

3 Partitions of Continuous Measures

Let λ and µ be nice measures in the plane. For a measurable set A ⊂ R2, its
λ-weight is denoted as λ(A). In particular, λ(R2) = µ(R2) = 1. For a non-
vertical line l, we denote by l+ and l− the upper and the lower halfplane of l,
respectively.

First, we develop a tool for partitioning the measures λ and µ into two regions
and then prove Theorem 1.

3.1 Γ-partition

A Γ-partition of the plane is formed either

(i) by a horizontal line, or
(ii) by a vertical line, or
(iii) by a horizontal ray and a downward-oriented ray emanating from a common

point.

Let a and b be positive integers. A partition of the plane into two regions A
and B is called (a, b)-balanced with respect to a measure λ if λ(A) = a/(a + b)
and λ(B) = b/(a + b). A partition of the plane into two regions A and B is
called (a, b)-balanced if it is (a, b)-balanced with respect to both λ and µ. A
(a, b)-balanced partition is equitable if a = b.
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Lemma 6 For any two measures in the plane, there exists an equitable Γ-
partition.

PROOF. We define a region R(x) for all x ∈ R as follows. Let x = x0 be
the equation of the halving line for µ, i.e. µ({p | px ≥ x0}) = 1/2. We assign
R(x0) := {p | px ≥ x0}. For every x < x0, we assign R(x) := {p | px ≥ x, py ≤
y} where y is chosen such that µ(R(x)) = 1/2. For every x > x0, we assign
R(x) := {p | px ≥ x or py ≥ y} where y is chosen such that µ(R(x)) = 1/2,
see Fig. 3. Note that a unique y exists (in both cases) since µ is nice.

We define a function f : R → [0, 1] as f(x) = λ(R(x)). The function f(x) is
continuous since µ is nice.

x0 x > x0x < x0

Fig. 3. Γ-partitions used to define f(x). The regions R(x) are shaded.

Let l be the horizontal halving line for µ, i.e. µ(l+) = 1/2. Put t := λ(l+). The
line l makes an equitable Γ-partition if t = 1/2. Otherwise, there exists a z ∈ R
such that f(z) = 1/2 since f(x) is a continuous function and lim

x→−∞
f(x) =

λ(l−) = 1− t and lim
x→+∞

f(x) = λ(l+) = t. Therefore the partition of the plane

into R(z) and R2 −R(z) is an equitable Γ-partition. 2

In general, for a constant r ∈ (0, 1), we define a region R(r, x), x ∈ R as follows.
Let x = x0 be the equation of a unique vertical line such that µ({p | px ≥
x0}) = r. We assign R(r, x0) := {p | px ≥ x0}. For every x < x0, we assign
R(r, x) := {p | px ≥ x, py ≤ y} where y is chosen such that µ(R(r, x)) = r. For
every x > x0, we assign R(r, x) := {p | px ≥ x or py ≥ y} where y is chosen
such that µ(R(r, x)) = r.

We define a function f(r, x) : R → [0, 1] as f(r, x) = λ(R(r, x)). Again f(r, x)
is a continuous function of x.

Theorem 7 For any two measures in the plane and an integer k ≥ 2, there
exists an (i, k − i)-balanced Γ-partition for some integer i such that i, k − i ≤
(5k + 1)/6.
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PROOF. If k is even then a (k/2, k/2)-balanced Γ-partition exists by Lemma
6. Suppose that k is odd and is at least three. We borrow some ideas from
[5]: we will define a sequence of signs, find a triple (a, b, c) of numbers with
the same signs (using Theorem 5), construct a 3-cutting with one downward-
oriented ray such that µ is split proportional to (a, b, c).

Let y = yi, i = 1, 2, . . . , k−1 be the equation of the horizontal line li such that
µ(l+i ) = 1/k. The theorem follows if, for some d(k − 1)/6e ≤ i ≤ b2k/3c, the
partition by the line li is (i, k−i)-balanced. We assume that, for all these i, the
partition by li is not (i, k− i)-balanced. Then, for each i, the λ-weight of l+i is
less than or greater than i/k. We assign the sign s(i) := −1 or 1, respectively.
By Theorem 5, there is a pair (a, b) or a triple (a, b, c) with sum k and the
same signs. Suppose that there is a pair (a, b) with a + b = k, s(a) = s(b) and
a, b ≤ b2k/3c. Without loss of generality s(a) = s(b) = 1. Thus λ(l+a ) > a/k
and λ(l+b ) > b/k. Note that λ(l−b ) = 1− λ(l+b ) < a/k. Since

lim
x→+∞

f
(

a

k
, x

)
= λ(l+a ) >

a

k
and lim

x→−∞
f

(
a

k
, x

)
= λ(l−b ) <

a

k

there is a real number x such that f(a/k, x) = a/k. Therefore a (a, k − a)-
balanced Γ-partition exists. The theorem follows since a, k − a ≤ (5k + 1)/6.

B C

A = l+a

la

x0

Fig. 4. A 3-cutting of the plane with µ-weights a/k, b/k, and c/k.

Suppose that there is a triple (a, b, c) with a + b + c = k, the same signs and
d(k−1)/6e ≤ a, b, c ≤ b2k/3c. Without loss of generality s(a) = s(b) = s(c) =
1. Consider a 3-cutting of the plane into three regions A = l+a , B, C using the
line la and a downward-oriented ray along the line with the equation x = x0

defined as follows. The halfplane l−a has µ-weight 1 − a/k = (b + c)/k. The
vertical ray of the 3-cutting divides it into two regions B and C with µ(B) =
b/k and µ(C) = c/k, see Fig. 4. Since λ(A) + λ(B) + λ(C) = λ(R2) = 1 and
λ(A) > a/k one of the following inequalities holds: λ(B) < b/k or λ(C) < c/k.

If λ(B) < b/k then f(1− b/k, x0) = 1− λ(B) > 1− b/k. Since

lim
x→−∞

f(1− b/k, x) = λ(l−b ) = 1− λ(l+b ) < 1− b/k

there is a real number x ∈ (−∞, x0) such that f(1 − b/k, x) = 1 − b/k.
Therefore a (b, a + c)-balanced Γ-partition exists. The theorem follows since
b, a + c ≤ (5k + 1)/6.
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If λ(C) < c/k then f(c/k, x0) < c/k. Since lim
x→+∞

f(c/k, x) = λ(l+c ) > c/k

then there is a real number x ∈ (x0,∞) such that f(c/k, x) = c/k. Therefore
a (c, a + b)-balanced Γ-partition exists. The theorem follows since c, a + b ≤
(5k + 1)/6. 2

3.2 Subdivision into Many Regions

We recursively apply Theorem 7 to obtain an orthogonal equitable partition.
The key idea is to show the existence of a shape invariant.

An orthogonal polygonal chain infinite in both directions is descending if it
can be traversed using only downward and rightward directions. An orthogonal
polygonal chain infinite in both directions is ascending if it can be traversed
using only upward and rightward directions. Let d and a be descending and
ascending orthogonal chains, respectively. Let d+ and a+ be the locus of points
above the corresponding chains (above and to the right of d; above and to the
left of a). Let l be a horizontal line. A V -region is defined as the intersection
of any subset of {d+, a+, l−}. In particular, d+, a+ and l− are V -regions.

(a) (b) (c)

cd ca

ca

cd

l

Fig. 5. (a) A V -region d+. (b) A V -region a+. (c) A V -region bounded by the chains
d and a and the line l.

One property of V -regions is their connectivity – every V -region is a connected
set. We show another useful property.

Lemma 8 The intersection of two V -regions is a V -region.

PROOF. It is straightforward to check that, for any two descending orthog-
onal chains d1 and d2, there a descending orthogonal chain d such that the
intersection d+

1 ∩ d+
2 = d+. Similarly, for any two ascending orthogonal chains

a1 and a2, there an ascending orthogonal chain a3 such that the intersection
a+

1 ∩ a+
2 = a+.

In general, let R1 and R2 be two V -regions. Let di, ai, and li be the descend-
ing/ascending orthogonal chain and the horizontal line of Ri for each i = 1, 2.

8



Let d and a be the descending and ascending orthogonal chains such that
d+ = d+

1 ∩ d+
2 and a+ = a+

1 ∩ a+
2 . Let l be the horizontal line such that

l− = l−1 ∩ l−2 . Then the intersection R1 ∩R2 = d+ ∩ a+ ∩ l− is a V -region. 2

Lemma 9 Let R be a V -region and (A, B) be a Γ-partition of the plane. Then
V ∩ A and V ∩B are V -regions.

PROOF. It follows from Lemma 8 and the fact that A and B are V -regions. 2

The main result, Theorem 1, follows from Theorem 7 and Lemma 9. It can
be shown by induction on k. It is obvious if k = 1. Suppose that it holds
for any number of regions from 1 to k − 1. We show that it is true for k
regions. By Theorem 7 there exists an (i, k − i)-balanced Γ-partition of the
plane into V -regions A and B. By the induction hypothesis there exists an
equitable partition of the plane into i regions for the measures reduced to A.
By Lemma 9 they intersect A by V -regions. Similarly we partition B into k− i
regions. The total number of V -regions is k and the theorem follows.

4 Point Measures

We will use point measures in this Section and consider two cases of any point
sets and points in general position. First, we prove Theorem 2 and then provide
an efficient algorithm for computing an equitable orthogonal partition.

4.1 Proof of Theorem 2

Theorem 2 deals with two finite sets of points colored in red and blue. Let a
and b be positive integers. A partition of the plane into two regions A and B is
called (a, b)-balanced with respect to a finite set S if |A∩ S|/|S| ≤ ba/(a + b)c
and |B∩S|/|S| ≤ bb/(a+ b)c. A partition of the plane into two regions A and
B is called (a, b)-balanced if it is (a, b)-balanced with respect to the set of each
color (red and blue). An (a, b)-balanced partition is equitable if a = b.

Using the idea of replacing points by disks in the plane (see for example [8]
and [7], page 49), one can reduce Theorem 7 to its discrete version.

Lemma 10 (A balanced Γ-partition for point measures) For any inte-
ger k ≥ 2, any set of n ≥ 1 red points and any set of m ≥ 1 blue points in
the plane, there exists a (i, k − i)-balanced Γ-partition for some integer i such
that i, k − i ≤ (5k + 1)/6.

9



The first claim of Theorem 2 follows from the inequality⌊⌊
na

k

⌋
b

a

⌋
≤

⌊
nb

k

⌋
(1)

where a ∈ {1, 2, . . . , k − 1} and b ∈ {1, 2, . . . , a − 1}. Indeed, suppose that a
region R obtained by a sequence of Γ-partitions and corresponds to the (a/k)-
portion. If we use a Γ-partition for b next and obtain a region R′ corresponding
to b, then the upper bound of the number of red points in the interior of R′

is the same as b is used in one Γ-partition for all red and blue points (by
Inequality (1)). We apply a Γ-partition for every region corresponding to b > 1.
In the end, the number of red points in the interior of every region is at most
bn/kc. Inequality (1) follows from bxc ≤ x.

To prove the second claim about points in general position, first we show the
existence of a Γ-partition into open regions A and B with the property that
(i) A contains exactly bna/kc red points and bma/kc blue points, and (ii) B
contains exactly bnb/kc red points and bmb/kc blue points for some a such
that a and b = k− a are at most (5k + 1)/6. Consider a Γ-partition produced
by the reduction from absolutely continuous measures. Let A and B be the
regions of the partition corresponding to a and b, respectively. Let L be the
line (horizontal or vertical) or two rays separating A and B. In the first case,
L contains at most one given point. In the second case each ray contains at
most one given (red/blue) point.

Suppose that na is not a multiple of k. Then L contains at least one red point
since ⌊

na

k

⌋
+

⌊
nb

k

⌋
=

⌊
na

k

⌋
+

⌊
n− na

k

⌋
= n− 1.

If L contains only one red point then A (resp. B) contains exactly bna/kc
(resp. bnb/kc) red points. If L contains two red points then one of the regions,
say A, contains bna/kc − 1 red points and we translate slightly one of the
rays of L so that A contains exactly bna/kc red points. The same argument
is applied if nb is not a multiple of k.

Suppose that na and nb are divisible by k. If L does not contain a red point
then A and B contain the required number of red points. If L contains one or
two red points then we translate slightly these rays so that A and B contain
the required number of red points.

Similarly we can achieve the required number of blue points in both A and B.
We now apply Γ-partitions recursively.

The second claim would follow if the bound in Inequality (1) is tight. In-
deed, consider a region of the subdivision produced by a sequence of cuts
corresponding to a decreasing sequence k > k1 > k2 > · · · > kl = 1. The
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tight bound of (1) would imply that the number of red points in these re-
gions is equal to bnk1/kc, bnk2/kc, . . . and finally bn/kc. Unfortunately the
bound is not tight. For example, if n = 100, k = 13, ki = 5, and kj = 3, then
bbnki/kckj/kic = 22 < 23 = bnkj/kc.

We prove another bound: the number of red points in these regions is at
least k1bn/kc, k2bn/kc, . . . and finally bn/kc. The first bound follows from
bnk1/kc ≥ k1bn/kc (since k1bn/kc is an integer less than or equal to nk1/k).
The remaining bounds can be shown by induction. Suppose that ni ≥ kibn/kc
red points are partitioned using a (ki+1, ki − ki+1)-split. Then the number of
red points in the interior of the region corresponding to ki+1 is at least⌊

niki+1

ki

⌋
≥

⌊
ki

⌊
n

k

⌋
ki+1

ki

⌋
≥ ki+1

⌊
n

k

⌋
.

The theorem follows.

4.2 Algorithm

We call a subdivision provided by Theorem 2 equitable orthogonal. Note that
there are two cases of point configuration: any point set and points in gen-
eral position. An equitable subdivision of points in general position is more
restrictive (each open region contains equal number of red (or blue) points).
The main result here is the following theorem.

Theorem 11 For any set of n ≥ 1 red points and any set of m ≥ 1 blue
points in the plane and any integer k ≥ 2, an equitable orthogonal subdivision
of the plane into k regions can be computed in O((n + m) log k) time.

PROOF. We prove the theorem for points in general position. In the de-
generate case, one can perturb the input using for example the symbolic per-
turbation. We also can use the perturbation from Theorem 12 since distinct
x-coordinates and distinct y-coordinates suffice.

The algorithm essentially follows the proof of the existence of an equitable
orthogonal subdivision. The basic step of the construction is the computation
of a balanced Γ-partition. We describe the algorithm for finding a (a, k − a)-
balanced Γ-partition of all n + m points which is applied then recursively.

Computing signs. Let N = n + m be the total number of points. To find the
value of a, we compute the signs s(i) for i = 1, 2, . . . , k − 1. We define the
sign s(i) for points as follows. Let Yr be the set of real numbers such that, for
every yr ∈ Yr, the number of red points above the line with equation y = yr
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is exactly bni/kc. Yr is an interval. Similarly we define the interval Yb for the
blue points. If yr > yb for all yr ∈ Yr and yb ∈ Yb then we assign s(i) := −1;
otherwise s(i) := 1.

For i = bk/2c, the intervals Yr and Yb and the sign s(i) can be computed in
O(N) time by applying a linear-time selection algorithm to the y-coordinates
of red and blue points. The set Yr can be used to split the red points into two
sets. We also split the blue points into two sets by Yb. The remaining signs
can be computed recursively using corresponding sets of red and blue points.
The total time for computing the signs is O(N log k).

Computing a balanced Γ-partition. Put b := k−a. The existence of a balanced
Γ-partition is based on Theorem 7. First, we decide what shape a balanced
Γ-partition has. Similar to Yr we find an interval Xr such that, for any line
with equation x = xr, xr ∈ Xr, the number of red points on its right (left) side
is bna/kc (resp. bnb/kc). We also find an interval Xb for the blue points. If the
intervals Xr and Xb intersect then any line with equation x = x0, x0 ∈ Xr∩Xb

is the balanced Γ-partition. Otherwise, a balanced Γ-partition has two rays
and we can decide whether the horizontal ray goes to +∞ or −∞ using the
sign of a. Without loss of generality there is a balanced Γ-partition with one
ray going to +∞. We show that it can be found in linear time.

We apply the prune-and-search technique [1]. Let x∗ be the x-coordinate of
the vertical ray of a balanced Γ-partition. To find x∗ we use the following
test. For a given x ∈ R, we decide whether x < x∗, x = x∗, or x > x∗. We
find y-coordinate of the horizontal ray such that two rays cut off a set S of
bna/kc+ bnb/kc red and blue points. We count the number r of red points in
S. If r = bna/kc then the Γ-partition is balanced and x = x∗. Otherwise, we
decide whether x∗ is smaller or greater than x using the sign of r − bna/kc.

A B

C D

P2

P1

A2 B1

C2 D

P2

P1

P3

A3

C1

A1

A4 B2

(a) (b)

Fig. 6. A general step of the algorithm. (a) Two Γ-partitions with apexes P1 and
P2. (b) A new Γ-partition with apex P3.
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At a general step of the search, we have two Γ-partitions with apexes P1 and
P2 such that there exists a balanced Γ-partition with apex in A, see Fig. 6
(a). We use nX , mX , and NX to denote the number of red/blue/all points in a
region X. The regions C ∪D and B∪D of the two Γ-partitions have the same
number of points bna/kc + bnb/kc. Therefore NB = NC . We do not process
points of D explicitly, we simply use counts nD and mD. The total number of
points involved in the search is N = NA + NB + NC = NA + 2NB. The goal
of the search step is to reduce the number of points involved in the search by
testing some x.

If NA ≤ NC then we test the median of x-coordinates of points in C, see Fig.
6 (b). If x∗ = x then a balanced Γ-partition is found. If x∗ < x then the points
in C2 are pruned; otherwise the points of C1 are pruned. In either case, at least
NC/2 points are pruned. Since N = NA + 2NC ≤ 3NC , at least N/6 points
are pruned.

If NA > NC then we test the Mth x-coordinate of points in A ∪ C where
M = b(NA + NC)/3c. Note that N = NA + 2NC < 3NA and M + 1 ≥
(NA + NC)/3 = (N − NC)/3 > N/3 − NA/3 > N/3 − N/9 > N/6. If x∗ > x
then the points in A1∪A3∪C1 are pruned; otherwise the points in A1∪A2∪C2

are pruned. In the first case, at least M > N/6− 1 points are pruned. In the
second case, the number of pruned points is at least

NA2 + NC2 ≥ (NA2 + NA4 + NC2)−NC1

since NC = NA4 + NC2 + NB2 ≥ NA4 + NC2 and, thus, NC1 ≥ NA4 . Since
NA2 + NA4 + NC2 = NA + NC − M ≥ 2(NA + NC)/3 and NC1 ≤ M , the
number of pruned points is at least

NA2 + NC2 ≥
2

3
(NA + NC)− 1

3
(NA + NC) =

1

3
(NA + NC) > N/6.

Thus, a balanced Γ-partition can be found in linear time. The subdivision is
then computed recursively. The total time for computing the subdivision is
O((n + m) log k) since a, b ≤ (5k + 1)/6 in the balanced Γ-partition. 2

4.3 Degenerate case

In this Section we consider points on the grid as in [6]. In an example shown
in Fig. 7 (a), the subdivision of 8 white and 12 black points into 4 regions
guaranteed by Theorem 2 may use grid lines and the number of points in
the regions can be different. On the other hand they can be partitioned into
regions with exactly 2 white and 3 black points in each region if the lines can
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avoid the grid, see Fig. 7 (b). Is it always possible to find such a subdivision?
We prove that the answer is affirmative.

(a) (b)

Fig. 7. (a) An equitable orthogonal partition of 8 white and 12 black points into 4
regions using Γ-partitions. (b) An equitable orthogonal partition avoiding grid.

A horizontal ε-segment is either a horizontal segment or a polygonal chain of
two horizontal segments connected by a vertical segment of length at most ε.
Similarly we define a vertical ε-segment, see Fig. 8 for examples.

≤ ε

≤ ε

≤ ε

≤ ε

Fig. 8. Horizontal and vertical ε-segments.

Theorem 12 Let R be a set of n ≥ 1 red points and B be any set of m ≥
1 blue points in the plane such that all points are distinct. For any integer
k ≥ 2 and any ε > 0, there exists a subdivision of the plane into k regions
R1, R2, . . . , Rk using at most k − 1 horizontal ε-segments and at most k − 1
vertical ε-segments such that the interior of every Ri, i = 1, 2, . . . , k contains
exactly bn/kc red points and bm/kc blue points.

PROOF. First, if the points are not in general position then we perturb
them as follows. Let δx > 0 be the smallest positive difference between x-
coordinates of two points of R∪B. Let p1, p2, . . . , pt be points with the same x-
coordinate. We assume that the points are sorted by y-coordinate. We change
x-coordinate of pi to x(pi) + iδ where δ > 0 is a real number smaller than
max(ε, δx)/t. Similarly, we change y-coordinates of the points. Let R′ and
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B′ be the perturbed point sets. Clearly, the points of R′ ∪ B′ are in general
position.

By Theorem 2, there exists a subdivision of the plane into k regions R1, R2, . . . , Rk

using at most k − 1 horizontal segments and at most k − 1 vertical segments
such that the interior of every Ri, i = 1, 2, . . . , k contains exactly bn/kc red
points and bm/kc blue points.

(a) (b)

pi

pi+1 pi

Fig. 9. The inverse perturbation.

The subdivision can be perturbed as follows. Without loss of generality we
consider a vertical segment. If the segment avoids points then we introduce
a horizontal segment of length at most ε between two consecutive points pi

and pi+1 that are split by the segment, see Fig. 9 (a) (if such a pair exists). If
the segment contains a point pi then we introduce a short horizontal segment
containing it, see Fig. 9 (b). The theorem follows. 2

If the number of red/blue points is multiple of k then we have the following.

Corollary 13 For any ε > 0 and any kn red and km blue distinct points in
the plane, there exists a subdivision of the plane into k regions with at most
k − 1 horizontal ε-segments and at most k − 1 vertical ε-segments such that
every region contains n red points and m blue points.
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[2] I. Bárány and J. Matoušek. Simultaneous partitions of measures by k-
fans. Discrete Comput. Geom., 25(3):317–334, 2001.
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