Table of PAs for M(n,n-1)

For each entry, the first row, if present, contains bounds better than those derived from MOLS,which are in the second row.
The bounds in bold (also, their cells are colored in green) are obtained in [1].
The bounds in yellow cells are from [2].

n0123456789
1049
20
2

110
10
112
60
5

156
12
59
56
4
90
60
4

240
15

272
16

90
5

342
18
20120
80
4
147
105
5
121
66
3

506
22

168
7

600
24
130
104
4

702
26

140
5

812
28
30170
120
4

930
30

992
31
183
165
5

136
4

175
5

288
8

1332
36
254
152
4

195
5
40
280
7

1640
40
282
210
5

1806
42
296
220
5

270
6

184
4

2162
46

384
8

2352
48
50
300
6

255
5

260
5

2756
52
408
270
5

330
6

392
7

399
7

290
5

3422
58
60481
300
5

3660
60
478
310
5

378
6

4032
63

455
7

330
5

4422
66
568
340
5

414
6
70
420
6

4970
70
588
504
7

5256
72
620
370
5

525
7

456
6

462
6

468
6

6162
78
80
720
9

6480
80

656
8

6806
82
776
504
6

510
6

516
6

522
6

616
7

7832
88
90866
540
6

637
7

552
6

558
6

564
6

570
6

672
7

9312
96
956
588
6

792
8
100
800
8

10100
100
1030
612
6

10506
102
1070
728
7

735
7

636
6

11342
106
1090
648
6

11772
108
1101130
660
6

666
6

1456
13

12656
112
1192
684
6

805
7

696
6

936
8
936
708
6

714
6
120
840
7

14520
120

732
6

738
6

744
6

15500
124

756
6

16002
126

16256
127

903
7
130
780
6

17030
130
1508
792
6

931
7

804
6

945
7

952
7

18632
136
1614
828
6

19182
138
1401640
840
6

987
7

852
6

1430
10

1440
10

1015
7

876
6

1029
7

888
6

22052
148
1501818
900
6

22650
150
1832
1064
7

1224
8

1232
8

1085
7

936
6

24492
156
1922
1106
7

954
6
160
1440
9

1127
7

972
6

26406
162
2042
984
6

1155
7

996
6

27722
166
2070
1176
7

28392
168
170
1020
6

1368
8

1032
6

29756
172
2316
1044
6

1050
6

2464
14

1593
9

1068
6

31862
178
1802404
1080
6

32580
180
2498
1092
6

1098
6

1288
7

1665
9

1116
6

1870
10

1128
6

1512
8
190
1140
6

36290
190
2638
1344
7

37056
192
2680
1164
6

1365
7

1176
6

38612
196
2786
1188
6

39402
198
2002842
1400
7

1407
7

1212
6

1421
7

1224
6

1640
8

1236
6

1656
8

2912
14

2299
11
210
2100
10

44310
210
3026
1272
6

1491
7

1284
6

1505
7

1512
7

1736
8

1308
6

2190
10
220
1320
6

2652
12

1332
6

49506
222
3260
2912
13

1800
8

1356
6

51302
226
3380
1368
6

52212
228
2303512
1380
6

1617
7

1624
7

54056
232
3602
1404
6

1645
7

1416
6

1659
7

1428
6

56882
238
2403656
1680
7

57840
240
3716
1452
6

58806
242

1464
6

1715
7

1476
6

2964
12

1736
7

1743
7
250
1500
6

62750
250
3932
1512
6

3036
12

2286
9

1785
7

65280
255

65792
256
4066
1548
6

3108
12
260
1560
6

2088
8

2096
8

68906
262
4228
1848
7

2120
8

1862
7

2670
10

1876
7

72092
268
2704318
1890
7

73170
270
4408
4080
15

4368
16

1644
6

3575
13

2760
10

76452
276
4574
1668
6

2511
9
280
1960
7

78680
280
4684
1692
6

79806
282
4706
1704
6

3420
12

1716
6

2009
7

4320
15

83232
288
290
1740
6

1746
6

1752
6

85556
292
5068
1764
6

1770
6

2072
7

2970
10

2980
10

3588
12
300
2100
7

2107
7

2114
7

2121
7

4560
15

4575
15

1836
6

93942
306
5360
2156
7

2163
7
310
2170
7

96410
310

2184
7

97656
312

2198
7

3150
10

2212
7

100172
316

2226
7

3190
10
320
4800
15

4815
15

1932
6

5168
16

2592
8

3900
12

1956
6

2289
7

2296
7

2961
9
330
1980
6

109230
330

2324
7

2664
8

2338
7

2010
6

2352
7

113232
336

2028
6

2373
7
340
2040
6

3410
10

3420
10

117306
342

2408
7

2415
7

2076
6

120062
346

2088
6

121452
348
350
2800
8

4212
12

6336
18

124256
352

2124
6

3195
9

2492
7

3213
9

2148
6

128522
358
360
2520
7

129960
360

2172
6

2541
7

2548
7

2555
7

2196
6

134322
366

5520
15

5535
15
370
2590
7

5565
15

2604
7

138756
372

2618
7

5625
15

2632
7

4901
13

2646
7

143262
378
380
2660
7

4572
12

2674
7

146306
382

5760
15

5775
15

2702
7

5805
15

2716
7

150932
388
390
2730
7

6256
16

2744
7

2751
7

2758
7

2765
7

3168
8

157212
396

2786
7

2793
7
400
6000
15

160400
400

2814
7

6045
15

4444
11

3240
8

2842
7

6105
15

3264
8

166872
408
410
2870
7

5343
13

3296
8

4956
12

4140
10

3735
9

7488
18

6255
15

2926
7

175142
418
420
2940
7

176820
420

2954
7

6345
15

2968
7

6800
16

2556
6

2989
7

2996
7

3003
7
430
2580
6

185330
430

6480
15

187056
432

2604
6

6525
15

2616
6

7866
18

3066
7

192282
438
440
3080
7

6615
15

3094
7

195806
442

3108
7

5785
13

3122
7

4917
11

6720
15

201152
448
450
3150
7

6765
15

3164
7

3171
7

3178
7

6825
15

3192
7

208392
456

3206
7

7344
16
460
3220
7

212060
460

3234
7

213906
462

6960
15

6975
15

3262
7

217622
466

3744
8

3752
8
470
3290
7

7065
15

3304
7

7095
15

4740
10

8550
18

3332
7

7155
15

2868
6

228962
478
480
7200
15

7215
15

2892
6

7245
15

3872
8

3395
7

2916
6

236682
486

3416
7

7335
15
490
2940
6

240590
490

2952
6

7888
16

2964
6

3465
7

7440
15

7455
15

2988
6

248502
498
500
3500
7

4008
8

4518
9

252506
502

3528
7

7575
15

3036
6

7605
15

3556
7

258572
508
510
3060
6

7665
15

261632
511

9234
18

3598
7

7725
15

4128
8

6204
12

4144
8

7785
15
520
4160
8

270920
520

5220
10

273006
522

6288
12

7875
15

4208
8

8432
16

7920
15

279312
528
530
3710
7

7965
15

4256
8

6396
12

3738
7

8025
15

4288
8

8055
15

5380
10

8085
15
540
6480
12

292140
540

3794
7

8145
15

9792
18

3815
7

3822
7

298662
546

3836
7

4392
8
550
3850
7

9918
18

3864
7

3871
7

3878
7

3885
7

3892
7

309692
556

3906
7

6708
12
560
8400
15

3927
7

3934
7

316406
562

3948
7

3955
7

3396
6

3969
7

3976
7

323192
568
570
3420
6

325470
570

4004
7

4011
7

8610
15

12650
22

4608
8

332352
576

4046
7

4053
7
580
4060
7

4648
8

4074
7

5830
10

4088
7

4680
8

4102
7

343982
586

4116
7

10602
18
590
10030
17

4137
7

8880
15

351056
592

4752
8

8925
15

4172
7

4179
7

4784
8

358202
598

MOLS bounds are from http://www.sagemath.org/doc/reference/combinat/sage/combinat/designs/latin_squares.html
Some files can be downloaded from zip [file].
The files for M(n,n-1) bound are < n >.txt
This zip file also contains:
10-7.txt, a file for M(10,7) ≥ 1504
18-14.txt, a file for M(18,14) ≥ 12240

Refernces

[1] Sergey Bereg, Linda Morales, and I. Hal Sudborough, Extending Permutation Arrays: Improving MOLS Bounds, to appear in Designs, Codes and Cryptography.
[2] Ingo Janiszczak, Wolfgang Lempken, Patric R. J. Ostergard, Reiner Staszewski, Permutation codes invariant under isometries, Designs, Codes and Cryptography, 2015.