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Abstract. We extend the method of controlled Lagrangians with kinetic shaping to those
mechanical systems on semidirect product Lie groups with broken symmetry, more specifically to the
Euler–Poincaré equations with advected parameters. We find a matching condition for the controlled
Lagrangian for such systems whose configuration manifold is a general semidirect product Lie group
G ⋉ V . Our motivating examples are a bottom-heavy underwater vehicle and a top spinning on a
movable base. Their configuration space is the special Euclidean group SE(3) = SO(3) ⋉ R3, where
the SE(3)-symmetry is broken by the gravity. The controls resulting from the matching condition
stabilize unstable equilibria of these examples. Furthermore, the matching helps us find additional
dissipative controls that asymptotically stabilize those unstable equilibria.
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1. Introduction.

1.1. Motivating examples. The goal of this paper is to extend the method
of controlled Lagrangians to a class of mechanical systems on semidirect product Lie
groups with broken symmetry in order to find controls that stabilize their unstable
equilibria. Our motivating examples are a bottom-heavy underwater vehicle and a
heavy top spinning on a movable base shown in Figure 1.

(a) Bottom-heavy underwater vehicle

g

(b) Heavy top spinning on movable base

Fig. 1. Motivating examples.

These system, although seemingly quite different, have a few features in common:
(i) Their configuration space is the semidirect product Lie group SE(3) := SO(3)⋉

R3.
(ii) One cannot decouple the dynamics into those in the rotational dynamics in SO(3)
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and the translational dynamics in R3 as in the standard rigid body dynamics due
to their interactions.

(iii) The gravity breaks their SE(3)-symmetry the system would otherwise possess.
Motivated by the first two features, we would like to consider mechanical systems

whose configuration manifold is a semidirect product Lie group S := G ⋉ V . If the
S-symmetry were not broken, the system would possess S-symmetry, and as a result,
one would be able to write the equations of motion as the standard Euler–Poincaré
equation (see, e.g., [29, Chapter 13]) on the Lie algebra s := g⋉V of S. However, the
broken symmetry mentioned in the last feature prevents one from performing such a
symmetry reduction.

In order to remedy the broken S-symmetry, one may introduce the so-called ad-
vected parameters to the formulation to recover the S-symmetry. Assuming that the
advected parameters live in the dual X∗ of a vector space X, the resulting Euler–
Poincaré equations with advected parameters [9, 20] give differential equations on
s×X∗.

1.2. Controlled Lagrangians. The method of controlled Lagrangians was orig-
inally developed for those systems described by the Euler–Lagrange equations [4, 5,
13, 18, 19, 31], and was also applied to the standard Euler–Poincaré systems [2, 3, 6].
We also note that there is the Hamiltonian version developed in [1, 17, 32, 33, 35] (see
also [30, §12.3]); the two approaches are known to be equivalent for a certain class of
systems [12].

We extend the method of controlled Lagrangians to the Euler–Poincaré equations
with advected parameters for those mechanical systems whose configuration manifold
is a semidirect product Lie group S = G ⋉ V—with a particular interest in the case
with S = SE(3) = SO(3)⋉R3 motivated by the examples shown above.

The main advantages of the Euler–Poincaré equations with advected parameters
are the following:
1. The equations of motion are defined on the vector space s×X∗.
2. It does not directly involve parametrizations of the group S such as the Euler

angles, which are known to cause difficulties in numerical computations [24, 38]
because of coordinate singularities.

3. The kinetic energy is typically defined in terms of a quadratic form defined on
the vector space.
These features, particularly the last one, are particularly desirable for the kinetic

shaping with the method of controlled Lagrangians because it boils down to consid-
ering a different quadratic form on the vector space. In other words, the matching
condition we seek here is less general than what is usually referred to as the matching
condition (see, e.g., Blankenstein et al. [1]) in which one obtains a PDE for the con-
trolled Lagrangian. We rather assume an ansatz for the controlled Lagrangian as in
[3–5] for the matching, and then perform a stability analysis to ensure the stabilization
of the unstable equilibrium of interest in each specific case.

We note that Chang and Marsden [10, 11] achieved stabilization of the heavy top
spinning on the ground by using internal rotors attached to the top. This is also
an example of the method of controlled Lagrangian applied to an Euler–Lagrange
equations with advected parameters. However, our second motivating example is
different from theirs: First, ours is the heavy top spinning on a movable base as
opposed to the ground; hence our configuration space is SE(3) as opposed to SO(3)
in theirs. Second, our control is applied as an external force to the movable base as
opposed to a torque applied to the top via internal rotors.
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We also note that our result on the underwater vehicle is different from those
of Leonard [26], Woolsey and Leonard [37]. Our present work mainly focuses on the
kinetic shaping, whereas Leonard [26] focuses on the potential shaping—the topic of
our companion paper [16]. Woolsey and Leonard [37] use torques by internal rotors,
whereas our control involves external forces only. Our setting is more amenable to
those controls applied by, e.g., jets attached to the body.

2. Semidirect Product Lie Groups. We first give a brief summary of semidi-
rect product Lie groups with a particular attention to SE(3). This section overlaps
with the companion paper [16], but is included for completeness as well as to set the
notation.

2.1. Semidirect Product Lie Groups and Lie Algebras. Let G be a Lie
group, V be a vector space, and GL(V ) be the set of all invertible linear trans-
formations on V . Let λ : G → GL(V ) be a (left) representation of G on V , i.e.,
λ(g1g2) = λ(g1)λ(g2) for any g1, g2 ∈ G. We then define the semidirect product Lie
group S := G⋉ V under the multiplication

s1 · s2 = (g1, x1) · (g2, x2) = (g1g2, λ(g1)x2 + x1).

Let g be the Lie algebra of G. Then the representation λ induces the Lie algebra
representation λ′ : g → gl(V ) as follows:

λ′(ξ)v :=
d

dt
λ(exp(tξ))v

∣∣∣∣
t=0

= λi
αkξ

αvk = ξV (v),

where ξV is the infinitesimal generator on V corresponding to ξ ∈ g. Then we have
the semidirect product Lie algebra s := g⋉ V equipped with the commutator

(2.1) ad(ξ,v)(η, w) := [(ξ, v), (η, w)] = (adξ η, λ
′(ξ)w − λ′(η)v).

One may also fix v ∈ V in λ′(ξ)v to regard ξ 7→ λ′(ξ)v as a linear map λ′
v : g → V ,

i.e.,

λ′
v(ξ) := λ′(ξ)v =

(
λi
αkv

k
)
ξα.

Then its dual (λ′
v)

∗ defines the momentum map J : T ∗V ∼= V × V ∗ → g∗ as follows:

⟨J(v, a), ξ⟩ = ⟨(λ′
v)

∗a, ξ⟩ = ⟨a, λ′
v(ξ)⟩ = akλ

k
αjv

jξα,

which results in

(2.2) J(v, a) = λk
αjv

jak.

This is nothing but the so-called diamond operator ⋄ : V ×V ∗ → g∗ (see Cendra et al.
[9], Holm et al. [20] and Holm et al. [21, §7.5]), i.e., v ⋄ a = J(v, a).

Let us also find an expression for the dual λ′(ξ)∗ of λ′(ξ):

⟨λ′(ξ)∗a, v⟩ = ⟨a, λ′(ξ)v⟩ ⇐⇒ (λ′(ξ)∗a)iv
i = akλ

k
αiξ

αvi,

which gives

(2.3) λ′(ξ)∗a = λk
αiξ

αak.

We may now write the coadjoint representation on the dual s∗ of S as follows:

(2.4) ad∗(ξ,v)(µ, a) =
(
ad∗ξ µ− J(v, a), λ′(ξ)∗a

)
=
(
cβγαξ

γµβ − λk
αjv

jak, λ
l
βiξ

βal
)
.
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Example 2.1 (SE(3) = SO(3) ⋉ R3). Consider the representation λ : SO(3) →
GL(R3) = GL(3,R) defined by the standard matrix-vector multiplication, i.e.,

λ(R)x = Rx.

Then we can define the special Euclidean group SE(3) := SO(3) ⋉ R3 under the
following group multiplication:

(R1,x1) · (R2,x2) = (R1R2, R1x2 + x1).

Another way of looking at SE(3) is that it is a matrix group

SE(3) =

{
(R,x) :=

[
R x
0T 1

]
| R ∈ SO(3), x ∈ R3

}
under the standard matrix multiplication. One then sees that the left translation of
(Ṙ, ẋ) ∈ T(R,x)SE(3) to the Lie algebra se(3) := T(I,0)SE(3) is

(2.5) L(R,x)−1(Ṙ, ẋ) = (R−1Ṙ, R−1ẋ) =: (Ω̂,v),

where Ω̂ ∈ so(3) is the body angular velocity and v is the translational velocity in
the body frame. Note that we may identify Ω̂ ∈ so(3) with Ω ∈ R3 via the hat map
defined as

(2.6) ˆ( · ) : R3 → so(3); a 7→ â :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .

So we may use (Ω,v) ∈ R3 × R3 as coordinates for se(3).
Then we have

λ′(Ω̂)v = λ′
v(Ω̂) =

d

dt
exp(tΩ̂)v

∣∣∣∣
t=0

= Ω̂v = Ω× v = εiαkΩ
αvk.

Therefore, we have λi
αk = εiαk, and so (2.2) and (2.3) give

J(v,P) = εkαjv
jPk = v ×P, λ′(Ω̂)∗P = εkαiΩ

αPk = P×Ω.

Note that, using the above identification of R3 with so(3), the structure constants
satisfy cαβγ = εαβγ as well. So, using (2.4), we may write the coadjoint representation
as follows:

ad∗(Ω,v)(Π,P) = (Π×Ω+P× v, P×Ω).

In Appendix A, we consider further semidirect products SE(3)⋉R3 and SE(3)⋉R4,
which crop up in the formulations of our motivating examples.

3. Euler–Poincaré Equation with Advected Parameters.

3.1. Recovering Broken Symmetry of Lagrangian. Consider a mechani-
cal system defined on a semidirect product Lie group S = G ⋉ V with Lagrangian
LΓ0

: TS → R with parameters Γ0 ∈ X∗, where X∗ is the dual of a vector space X.
Specifically, we consider the Lagrangian of the following form:

LΓ0(s, ṡ) =
1

2
⟪ṡ, ṡ⟫− UΓ0(s),
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where ⟪ · , · ⟫ is a left-invariant metric on TS, i.e., for any s, s0 ∈ S and any ṡ ∈ TsS,

⟪TsLs0(ṡ), TsLs0(ṡ)⟫ = ⟪ṡ, ṡ⟫,
where L stands for the left translation, i.e., Ls0(s) = s0s for any s0, s ∈ S, and TL is
its tangent lift. So the kinetic term is S-invariant.

Suppose however that the potential is not S-invariant, i.e., there exist s0, s ∈ S
such that UΓ0(s0s) ̸= UΓ0(s). This breaks the S-symmetry of the Lagrangian LΓ0 . We
further suppose that we can fix this in the following way: Define an extended potential
U : S×X∗ → R so that U(s,Γ0) = UΓ0

(s) for any s ∈ S, and let κ : S → GL(X) be a
representation of S on X, and κ∗ : S → GL(X∗) be the induced representation on the
dual X∗. We assume that we can find an appropriate κ so that we can recover the
S-symmetry of the potential: For any s0, s ∈ S and any Γ ∈ X∗,

U(s0s, κ(s0)
∗Γ) = U(s,Γ).

Now let us define an extended Lagrangian L : TS×X∗ → R by setting

L(s, ṡ,Γ) :=
1

2
⟪ṡ, ṡ⟫− U(s,Γ),

and also define the action

Ψ: S× (TS×X∗) → TS×X∗;

(s0, (s, ṡ,Γ)) 7→ Ψs0(s, ṡ,Γ) := (s0s, TsLs0(ṡ), κ
∗(s0)Γ).

Then we see that the extended Lagrangian now possesses the S-symmetry, i.e., L ◦
Ψs0 = L for any s0 ∈ S.

3.2. Euler–Poincaré Equation with Advected Parameters. Defining, with
an abuse of notation, the reduced potential

U : X∗ → R; U(Γ) := U(e,Γ),

we may define the reduced extended Lagrangian ℓ : s×X∗ → R as

(3.1) ℓ(ξ, v,Γ) := L(e, (ξ, v),Γ) = K(ξ, v)− U(Γ)

with the kinetic energy term K defined as

(3.2) K(ξ, v) :=
1

2
⟪(ξ, v), (ξ, v)⟫ = 1

2
Gαβξ

αξβ +Gαjξ
αvj +

1

2
Gijv

ivj ,

where all these G’s are constant matrices, and Gαβ and Gij are assumed to be symmet-
ric. We also define Giβ := Gβi component-by-component so that Gαjξ

αvj = Giβv
iξβ .

Then we obtain the Euler–Poincaré equation with advected parameters (see [9, 20]
and [21, §7.5]):

d

dt

(
δℓ

δ(ξ, v)

)
= ad∗(ξ,v)

δℓ

δ(ξ, v)
+K

(
δℓ

δΓ
,Γ

)
,

dΓ

dt
= κ′(ξ, v)∗Γ,

where we defined, for any smooth function f : E → R on a real vector space E, its
functional derivative δf/δx ∈ E∗ at x ∈ E such that, for any δx ∈ E, under the
natural dual pairing ⟨ · , · ⟩ : E∗ × E → R,〈

δf

δx
, δx

〉
=

d

dt
f(x+ t δx)

∣∣∣∣
t=0

.
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For example, if E = Rn with the dual pairing in terms of the dot product, δf/δx =
∂f/∂x, i.e., the standard gradient. Note also that K : X ×X∗ → s∗ = g∗ × V ∗ is the
momentum map associated with the above action κ defined in a similar manner to J:

K(x,Γ) = (Kg∗(x,Γ), KV ∗(x,Γ)) := (κ′
x)

∗Γ,

where we split the components of K into those in g∗ and V ∗ as Kg∗ and KV ∗ . Then,
using the formula (2.4) for the coadjoint action on s∗, we have

d

dt

(
δℓ

δξ

)
= ad∗ξ

δℓ

δξ
− J

(
v,

δℓ

δv

)
+Kg∗

(
δℓ

δΓ
,Γ

)
,

d

dt

(
δℓ

δv

)
= λ′(ξ)∗

δℓ

δv
+KV ∗

(
δℓ

δΓ
,Γ

)
,

dΓ

dt
= κ′(ξ, v)∗Γ.

(3.3)

Example 3.1 (Underwater vehicle [25–27]; see also [14, 34]). Consider the under-
water vehicle shown in Figure 2. The configuration space is S = SE(3), i.e., rotations
about the center of buoyancy and its translational positions. Let {ei}3i=1 and {Ei}3i=1

be the orthonormal spatial/inertial and body frames, respectively. The orientation
R ∈ SO(3) of the vehicle is defined so that Ei = Rei for i = 1, 2, 3. Note that
our definitions of e3 and E3 are the opposite of those in [25–27]. Letting x ∈ R3

be the position of the center of buoyancy in the spatial frame, we have an element
(R,x) ∈ SE(3) giving the orientation and the position of the vehicle.

e1

e2

e3

E3

E1

E2

lχx

Fig. 2. Underwater vehicle.

We assume that the vehicle is neutral buoyant and the shape of vehicle is ellip-
soidal and also that the body frame is aligned with the principal axes of the body.
Let lχ be the position vector—l being its length and χ being the unit vector for the
direction—of the center of mass measured from the center of buoyancy; see Figure 2.
Then we have

(3.4) Gαβ = diag(I1, I2, I3), Gαj = mlχ̂, Gij = diag(m1,m2,m3).

We note that m1 ̸= m2 ̸= m3 in general, and so Gij is not a constant multiple of the
identity matrix; see [25] for details.

Due to the neutral buoyancy, the potential term is given as

Ue3(R,x) = mgle3 · (Rχ) = mglχ · (R−1e3).

Hence we define the extended potential U : SE(3)× (R3)∗ → R by setting

U((R,x),Γ) := mglχ · (R−1Γ)
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so that U((R,x), e3) = Ue3
(R,x).

Using the representation (A.6) of SE(3) on R3 from Appendix A.2, we have (see
(A.7))

κ∗(R,x)Γ = RΓ,

and so, for any (R0,x0), (R,x) ∈ SE(3) and any Γ ∈ R3,

U((R0,x0) · (R,x), κ∗(R0,x0)Γ) = U((R,x),Γ).

Hence the reduced potential U : (R3)∗ → R is

U(Γ) := U((I,0),Γ) = mglχ · Γ,

and the reduced Lagrangian ℓ : se(3)× (R3)∗ → R is

ℓ(Ω,v,Γ) = K(Ω,v)− U(Γ),

where Ω and v are defined in (2.5), and K is the kinetic energy defined in (3.2) using
the mass matrix from (3.4). Note that Γ is the vertical upward direction (opposite of
the direction of gravitational force) in the body frame.

The representation κ also gives (again see (A.7))

κ′(Ω,v)∗Γ = Γ×Ω,

as well as the momentum map

K(y,Γ) =
(
Kso(3)∗(y,Γ),K(R3)∗(y,Γ)

)
= (κ′

y)
∗Γ = (y × Γ,0).

As a result, the Euler–Poincaré equation (3.3) with advected parameters gives

d

dt

(
∂ℓ

∂Ω

)
=

∂ℓ

∂Ω
×Ω+

∂ℓ

∂v
× v +

∂ℓ

∂Γ
× Γ,

d

dt

(
∂ℓ

∂v

)
=

∂ℓ

∂v
×Ω,

Γ̇ = Γ×Ω,

(3.5)

as in [25–27].

Example 3.2 (Heavy top on movable base). Consider the heavy top rotating
on a movable base shown in Figure 3. The configuration space is again SE(3): The
orientation R ∈ SO(3) is defined in the same way as in Example 3.1 with respect to
the body frame attached to the top at the junction point with the base, and is aligned
with the principal axes; x ∈ R3 is the position of the base, which is assumed to be a
point mass M for simplicity.

Let m be the mass of the heavy top, and m̄ := m + M the total mass of the
system, I = diag(I1, I2, I3) the inertia tensor of the top, l the length of the line
segment connecting the origin of the body frame (junction of body and base) to the
center of mass of the top, χ the unit vector pointing in that direction in the body
frame, and g the gravitational constant—not to be confused with the italic g used for
an element of Lie group G.
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X

m

M

lχ

e3

e1
e2

x

E1

E2

E3

u

q

Fig. 3. Heavy top on a movable base.

Let B ⊂ R3 be the domain occupied by the top in the body frame and ρ0 : B → R
be the mass density of the top. Since the position q(t) in the spatial frame of any
point X ∈ B at time t is q(t) = R(t)X +x(t), the velocity of this point in the spatial
frame is q̇ = ṘX + ẋ. Therefore, we have the following Lagrangian:

L(R,x, Ṙ, ẋ) =

∫
B

(
1

2
ρ0(X)∥q̇∥2 − gρ0(X)(RX+ x) · e3

)
d3X+

1

2
M∥ẋ∥2 −Mgx · e3

=
1

2

(
m̄∥v∥2 + IΩ ·Ω+ 2v ·

(
Ω× lχm

))
−mglχ · (R−1e3)− m̄gx · e3

= K(Ω,v)− Ue3(R,x)

where the kinetic energy K is defined in (3.2) with

(3.6) Gαβ = diag(I1, I2, I3), Gij = m̄I, Gαj = mlχ̂,

and the potential term is defined as

Ue3(R,x) := mglχ · (R−1e3) + m̄gx · e3 = gm ·
(
sT e3

)
with

s = (R,x) =

[
R x
0T 1

]
∈ SE(3), m :=

[
mlχ
m̄

]
∈ R4, e3 :=

[
e3
0

]
∈ R4.

Notice that the potential Ue3 depends not only on the orientation of the top but also
on the height of the system, and hence is not SE(3)-invariant.

Let us define the extended potential U : SE(3)× (R4)∗ → R by setting

U((R,x),Γ) := gm ·
(
sTΓ

)
,

so that U((R,x), e3) = Ue3(R,x). Using the representation κ : SE(3) → GL(R4)
defined in (A.1) in Appendix A.1, we have (see (A.2))

κ∗(s)Γ = (sT )−1Γ.

As a result, we have, for any s0, s ∈ SE(3),

U(s0s, κ
∗(s0)Γ) = U(s,Γ).
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Let us write Γ = (Γ, h) ∈ (R4)∗. Note that Γ is the vertical upward direction (opposite
of the direction of gravitational force) in the body frame, whereas h is the height of the
base in the inertial frame. Then we may define the reduced potential U : (R4)∗ → R
as

(3.7) U(Γ, h) := U(e, (Γ, h)) = gm · (Γ, h) = mglχ · Γ+ m̄gh,

and thus we have the reduced Lagrangian ℓ : se(3)× (R4)∗ → R as follows:

ℓ(Ω,v, (Γ, h)) = K(Ω,v)− U(Γ, h).

Then, using the expressions in (A.4) and (A.5), the Euler–Poincaré equation (3.3)
with advected parameters becomes:

d

dt

(
∂ℓ

∂Ω

)
=

∂ℓ

∂Ω
×Ω+

∂ℓ

∂v
× v +

∂ℓ

∂Γ
× Γ,

d

dt

(
∂ℓ

∂v

)
=

∂ℓ

∂v
×Ω+

∂ℓ

∂h
Γ,

Γ̇ = Γ×Ω,

ḣ = Γ · v.

(3.8)

Remark 3.3. The above equations (3.8) are very similar to (3.5) for the underwa-
ter vehicle. Indeed, one may apply the control force

(3.9) up = − ∂ℓ

∂h
Γ = m̄gΓ

to the second equation of (3.8) to cancel the extra term, and as a result, may discard
the height variable h from the formulation to reduce the system to the same equa-
tion (3.5) (with a slightly different kinetic energy metric). One can think of the above
control as the potential shaping that cancels the second term on the right-hand side
of (3.7); see the companion paper [16] for details.

4. Controlled Lagrangian and Matching.

4.1. Controlled Euler–Poincaré Equation with Advected Parameters.
Suppose that we would like to stabilize an unstable equilibrium of the system (3.3) by
applying an external (linear) force uk (the roman superscript “k” denotes kinetic, not
a coordinate index) to the system. Practically speaking, the system is either pushed
by some external means or controlled by jets attached to the body; the latter is more
amenable to our formulation because our equations are written in the body frame.

Consider the controlled Euler–Poincaré equation with advected parameters:

d

dt

(
δℓ

δξ

)
= ad∗ξ

δℓ

δξ
− J

(
v,

δℓ

δv

)
+Kg∗

(
δℓ

δΓ
,Γ

)
,

d

dt

(
δℓ

δv

)
= λ′(ξ)∗

δℓ

δv
+KV ∗

(
δℓ

δΓ
,Γ

)
+ uk,

dΓ

dt
= κ′(ξ, v)∗Γ.

(4.1)

We would like to match this control system with the Euler–Poincaré equation with
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advected parameters for a different reduced Lagrangian ℓτ,σ,ρ : s×X∗ → R:

d

dt

(
δℓτ,σ,ρ
δξ

)
= ad∗ξ

δℓτ,σ,ρ
δξ

− J

(
v,

δℓτ,σ,ρ
δv

)
+Kg∗

(
δℓτ,σ,ρ
δΓ

,Γ

)
,

d

dt

(
δℓτ,σ,ρ
δv

)
= λ′(ξ)∗

δℓτ,σ,ρ
δv

+KV ∗

(
δℓτ,σ,ρ
δΓ

,Γ

)
,

dΓ

dt
= κ′(ξ, v)∗Γ.

(4.2)

In other words, we would like to find the controlled Lagrangian ℓτ,σ,ρ such that (4.2)
gives (4.1). Then we determine the control uk such that (4.1) and (4.2) become
equivalent. As a result, the dynamics of the controlled system (4.1) is described by
the “free” system (4.2) with the new Lagrangian ℓτ,σ,ρ.

4.2. Controlled Lagrangian. We would like to seek the controlled Lagrangian
of the form

(4.3) ℓτ,σ,ρ(ξ, v,Γ) := Kτ,σ,ρ(ξ, v)− U(Γ),

where Kτ,σ,ρ is the modified kinetic energy whose expression we now seek in the
following form as in [3]: Using the kinetic energy K and the metric tensor G from
(3.2) as well as constant matrices σ, ρ, and τ (σ and ρ are symmetric) to be determined
below,

Kτ,σ,ρ(ξ, v) := K
(
ξα, vi + τ iαξ

α
)
+

1

2
σijτ

i
ατ

j
βξ

αξβ

+
1

2
(ρij −Gij)

(
vi + (GikGkα + τ iα)ξ

α
)(
vj + (GjkGkβ + τ jβ)ξ

β
)

=
1

2
(Gαβ +∆αβ)ξ

αξβ + (Giβ +∆iβ)v
iξβ +

1

2
ρijv

ivj

= K(ξ, v) +
1

2
∆αβξ

αξβ +∆iβv
iξβ +

1

2
∆ijv

ivj

with

∆αβ :=
(
Giβ + σijτ

j
β

)
τ iα +∆iβ

(
GikGkα + τ iα

)
, ∆iβ := ρij

(
GjkGkβ + τ jβ

)
−Giβ ,

∆ij := ρij −Gij ,

where Gij stands for the inverse of the matrix Gij , and we use the same convention
for other matrices too.

4.3. Matching Condition. Clearly δℓ/δΓ = δℓτ,σ,ρ/δΓ, and so, in order to
have a matching, it is sufficient to impose

(4.4)
δℓτ,σ,ρ
δξ

=
δℓ

δξ
, J

(
v,

δℓ

δv
− δℓτ,σ,ρ

δv

)
= 0.

Then (4.1) and (4.2) match under the control uk given as

uk =
d

dt

(
δℓ

δv
− δℓτ,σ,ρ

δv

)
− λ′(ξ)∗

(
δℓ

δv
− δℓτ,σ,ρ

δv

)
.
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The first condition in (4.4) is equivalent to ∆αβξ
β +∆αjv

j = 0 for any ξ ∈ g and
any v ∈ V . Hence this reduces to ∆αβ = 0 and ∆αj = 0. Then ∆iβ = 0 as well, but
then this gives

(MC1) τ iβ =
(
ρij −Gij

)
Gjβ ,

whereas substituting ∆iβ = 0 into ∆αβ = 0, we obtain(
Giβ + σijτ

j
β

)
τ iα = 0.

We see that this is satisfied if Giβ + σijτ
j
β = 0, but then this in turn is satisfied if

(MC2) σij = Gij − ρij .

On the other hand, the second condition in (4.4) is written as, using (2.2),

λk
αjv

j(∆kβξ
β +∆klv

l) = 0.

Taking ∆iβ = 0 and the expression for ∆kl into account, we have

λk
αj(ρkl −Gkl)v

jvl = 0.

Since this holds for any v ∈ V , it implies that λk
αj(ρkl −Gkl) is skew-symmetric with

respect to the indices (j, l), i.e.,

(MC3) λk
αl(ρkj −Gkj) = −λk

αj(ρkl −Gkl).

To summarize, we have the following:

Theorem 4.1. Under the matching conditions (MC1)—(MC3) and the control
law

uk
i = (Gij − ρij)v̇

j − λj
βi(Gjk − ρjk)ξ

βvk,

the controlled Euler–Poincaré equations (4.1) with advected parameters for the La-
grangian (3.1) and the Euler–Poincaré equations (4.2) with advected parameters for
the controlled Lagrangian (4.3) are equivalent.

Remark 4.2. For implementation purposes, we may get rid of the acceleration v̇
from the above feedback control law because we can rewrite (4.2) so that (ξ̇, v̇) is
given in terms of functions of (ξ, v,Γ); see Example 4.4 below for an expression for
the case with S = SE(3).

Remark 4.3. Let us give an intuitive interpretation of the matching conditions.
The conditions (MC1) and (MC2) imply that we “reshape” the kinetic energy by
replacing the mass matrix Gij by ρij only, i.e., no modifications of the other parts
of the mass matrix. This intuitively makes sense because we are applying controls
only to the “translational” part V . On the other hand, (MC3) imposes a restriction
on the form of ρij to ensure that the interaction term between the “rotational” and
“translational” parts (g and V respectively) matches with the original system. This
also makes sense because their interactions are governed by the law of nature and
should not be affected by the control.
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Example 4.4 (S = SE(3)). As seen in Example 2.1, λi
αk = εiαk in this case, and

so the third matching condition (MC3) becomes εkαl(ρkj −Gkj) = −εkαj(ρkl −Gkl).
One may select ρ so that ρij−Gij becomes a non-zero constant multiple of the identity
matrix, i.e.,

(4.5) ρij = Gij −K δij for some K ∈ R\{0}.

Then the above condition becomes εjαl = −εlαj , which is trivially satisfied. The
feedback control then becomes

(4.6) uk = K(v̇ +Ω× v).

Note that, as mentioned in the above remark, one may replace the acceleration term v̇
by a function of (Ω,v,Γ) as follows: Using (4.2) along with the matching conditions,
we have[

Ω̇
v̇

]
= G−1

[
Π×Ω+P× v −mglχ× Γ

P×Ω

]
with Π :=

δℓτ,σ,ρ
δΩ

, P :=
δℓτ,σ,ρ
δv

.

5. Stability Analysis.

5.1. The Energy–Casimir Method. We would like to establish the stability
of equilibria of the systems from Examples 3.1 and 3.2 by constructing an appropriate
Lyapunov function. As mentioned in Remark 3.3, the system from Example 3.2 after
the ad-hoc potential shaping control (3.9) reduces to (3.5) in Example 3.1 with a
slightly different Lagrangian. Therefore, we may write down both systems under
control force uk from (4.6) via the kinematic shaping as

d

dt

(
∂ℓ

∂Ω

)
=

∂ℓ

∂Ω
×Ω+

∂ℓ

∂v
× v +

∂ℓ

∂Γ
× Γ,

d

dt

(
∂ℓ

∂v

)
=

∂ℓ

∂v
×Ω+ uk,

Γ̇ = Γ×Ω,

(5.1)

or equivalently

d

dt

(
∂ℓτ,σ,ρ
∂Ω

)
=

∂ℓτ,σ,ρ
∂Ω

×Ω+
∂ℓτ,σ,ρ
∂v

× v +
∂ℓτ,σ,ρ
∂Γ

× Γ,

d

dt

(
∂ℓτ,σ,ρ
∂v

)
=

∂ℓτ,σ,ρ
∂v

×Ω,

Γ̇ = Γ×Ω,

(5.2)

with the controlled Lagrangian

(5.3) ℓτ,σ,ρ(Ω,v,Γ) := Kτ,σ,ρ(Ω,v)− U(Γ).

The main advantage of the method of controlled Lagrangians is that, thanks to
the matching, the controlled system possesses invariants (conserved quantities) such
as the energy and Casimirs, and is amenable to the energy–Casimir method (see, e.g.,
[29, §1.7]). Its main idea is to use such invariants to construct an invariant E that
works as a control Lyapunov function to establish the stability of the equilibrium.
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More specifically, the energy–Casimir method also prescribes a method to find
such a Lyapunov function E using the energy of the system as well as Casimirs (or
some other invariants of the system) as follows: It is straightforward to show that the
energy

Eτ,σ,ρ(Ω,v,Γ) := Kτ,σ,ρ(Ω,v) + U(Γ)

associated with the controlled Lagrangian (5.3) is an invariant of the system (5.2).
Also, as mentioned in Appendix A.4, the system (5.2) has three Casimir functions
(see (A.8)) or in the Lagrangian variables,

(5.4) C1 =

∥∥∥∥∂ℓτ,σ,ρ∂v

∥∥∥∥2, C2 =
∂ℓτ,σ,ρ
∂v

· Γ, C3 = ∥Γ∥2.

This implies that, for any smooth function Φ: R3 → R, the function

E := Eτ,σ,ρ +Φ(C1, C2, C3)

is also an invariant of the system (5.2) as well. Note that the actual form of E varies
depending on whether the system has other invariants, as we shall see below.

Now, one determines Φ so that E provides a control Lyapunov function. Specifi-
cally, let ζe be an equilibrium of the uncontrolled system (3.5), and proceed as follows:
1. Find the conditions under which the first variation (the gradient) DE vanishes

at the equilibrium ζe.
2. Calculate the second variation (the Hessian) D2E at ζe.
3. Find the conditions under which the Hessian D2E(ζe) is definite.

As a result, there exists an open neighborhood U of ζe such that E(ζ) > E(ζe) (or
E(ζ) < E(ζe)) for any ζ ∈ U\{ζe}. Note also that ζe is an equilibrium of the controlled
system (5.2) as well because E is an invariant of (5.2) and E(ζe) is a strict local
extremum.

As a result, E gives a control Lyapunov function, and hence Lyapunov’s Stability
Theorem (see, e.g., Khalil [22, Theorem 4.1] and Logemann and Ryan [28, Theo-
rem 5.2]) implies that the equilibrium ζe is stable.

5.2. Heavy top on movable base. Consider Example 3.2 (see also Figure 1b)
with the Lagrange top, i.e., the inertia tensor I = diag(I1, I2, I3) satisfies I1 = I2 ̸= I3,
and its center of mass lies on the axis of symmetry with respect to the body frame, that
is, χ = (0, 0, 1). We would like to show that the top spinning upright on the stationary
base can be stabilized by the above control. Note that, combining Gij = m̄ δij from
(3.6) and ρij = Gij −K δij from (4.5), we may set ρij = ϱ δij with ϱ := m̄−K ∈ R.

This system has two additional invariants besides the energy and the Casimirs:
The first one is the well-known invariant Ω3 for the Lagrange top, and the second and
less obvious one is the energy-like invariant:

E0(Ω,Γ) :=
1

2

(
I1(Ω

2
1 +Ω2

2) + I3Ω
2
3

)
+m

I1ϱ

I1ϱ−m2l2
glΓ3.

This implies that, for any constant c ∈ R and any smooth functions Φ: R3 → R and
ϕ : R → R,

(5.5) E := Eτ,σ,ρ + cE0 +Φ(C1, C2, C3) + ϕ(Ω3)

is also an invariant of the system as well.
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The equilibrium corresponding to the top spinning upright on the stationary base
is

(5.6) (Ωe,ve,Γe) = (Ω0E3,0,E3).

Note that the upright spinning Lagrange top with |Ω0| > 2
√
mglI1/I3 is known to

be stable [29, Theorem 15.10.1]. Therefore we assume that |Ω0| < 2
√
mglI1/I3 here,

and show that the equilibrium is stabilized regardless of the value of Ω0.
An interesting observation is that the above energy-like invariant E0 is the energy

of the Lagrange top without the movable base—the only difference is that the gravita-
tional constant g is modified to be I1ϱ

I1ϱ−m2l2 g. This observation suggests the following:

If we pick ϱ ∈ (0,m2l2/I1), then the modified gravitational constant I1ϱ
I1ϱ−m2l2 g be-

comes negative, and hence effectively turning the upright position of the top into the
vertical downward one for the controlled system. As a result, the upright position of
the controlled system becomes stable. Let us justify this intuitive argument using the
energy–Casimir method.

Proposition 5.1 (Stabilization of heavy top on a movable base). The unstable
equilibria (5.6) with |Ω0| < 2

√
mglI1/I3 of the heavy-top-on-movable-base system in

Example 3.2 are stabilized by applying to the second equation of (3.8) the control
u = up + uk, where up is defined in (3.9) and uk is from (4.6) with K = m̄ − ϱ for
any ϱ ∈ (0,m2l2/I1).

Proof. Note first that, as mentioned above, we have ρij = ϱ δij with ϱ := m̄−K
here.

Let us use ( · )|e to indicate that a function is evaluated at the equilibrium. The
first variation condition DE|e = 0 is satisfied if

(5.7) D2Φ|e = 0, D3Φ|e =
m2l2 − (1 + c)I1ϱ

2(I1ϱ−m2l2)
mgl, ϕ′(Ω0) = −(1 + c)I3Ω0,

where Di stands for the derivative with respect to the i-th variable.
By evaluating the leading principal minors of the Hessian D2E|e, we also find

that the following conditions—in addition to (5.7)—are sufficient for its positive-
definiteness:

(5.8)

D1Φ|e = D2
22Φ|e = D2

33Φ|e = D2
23Φ|e = ϕ′′(Ω0) = 0,

c > 0,
m2l2

(1 + c)I1
< ϱ <

m2l2

I1
.

Therefore, we may take, for example,
(5.9)

Φ(C1, C2, C3) =
m2l2 − (1 + c)I1ϱ

2(I1ϱ−m2l2)
mgl(C3−C3|e), ϕ(Ω3) = −(1+ c)I3Ω0(Ω3−Ω0).

However, since we may take c > 0 arbitrarily large, we can achieve stability for
any ϱ ∈ (0,m2l2/I1).

Figure 4 shows the results of simulations demonstrating the stabilizing control by
the kinetic shaping; see the caption for the parameters and initial condition. One can
see that the equilibrium (5.6) is unstable without control uk, but is stabilized after
the control is applied to the system.
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(a) Body angular velocity
(Ω1,Ω2)

(b) Base velocity v in body
frame

(c) Vertical upward direction Γ
seen from body frame

Fig. 4. Simulation results for the heavy top on a movable base with M = 0.44 [kg], m = 0.7 [kg],
I1 = I2 = 0.2 kg ·m2, I3 = 0.24 kg ·m2, l = 0.215 [m], g = 9.8 [m/s2], and ϱ = 0.9m2l2/I1 with
initial condition Ω(0) = (0.1, 0.2, 0.1), v(0) = 0, and Γ(0) = (cos θ0 sinφ0, sin θ0 sinφ0, cosφ0) with
θ0 = π/3 and φ0 = π/20. The solutions are shown for the time interval 0 ≤ t ≤ 30. The blue dashed
line is for the system with only the control (3.9) coming from potential shaping, whereas the red solid
line is for the system with both the potential and kinetic shaping controls (3.9) and (4.6). Note that
the uncontrolled system with u = 0 involves a free fall and does not provide a good comparison to
illustrate the effect of stabilizing control uk.

5.3. Underwater Vehicle. Let us now consider the underwater vehicle from
Example 3.1. We assume, in addition to those assumptions mentioned in Example 3.1,
that the center of mass is aligned with the third principal axis E3 and below the center
of buoyancy, i.e., χ = (0, 0,−1), and so it is bottom-heavy.

The equilibrium of our interest is the steady translational motion along E2, i.e.,

(5.10) (Ωe,ve,Γe) = (0, v0E2,E3)

with v0 ∈ R\{0}. According to Leonard [25, Theorem 2], this is an unstable equi-
librium of (3.5) if the vehicle is bottom-heavy and m2 < m1, which is the case if
the semi-major axis of the ellipsoidal hull along E2 is longer than that along E1 as
depicted in Figure 2; see [25, Appendix B] for details.

We can show that our control (4.6) stabilizes this equilibrium too:

Proposition 5.2 (Stabilization of underwater vehicle). The unstable equilib-
ria (5.10) with v0 ∈ R\{0} of the underwater vehicle system (3.5) in Example 3.1 are
stabilized by applying to the second equation of (3.5) the control u = uk (as in (5.1)),
where uk is from (4.6) with any K satisfying

(5.11) m2 < K < min

{
m3,m1 −

ml2

I2
m

}
.

Proof. Let us seek the control Lyapunov function of the form

(5.12) E(Ω,v,Γ) := Eτ,σ,ρ(Ω,v,Γ) + Φ(C1, C2, C3),

because this system does not seem to have any additional invariants besides the energy
and the Casimirs.

One can show that DE|e = 0 if

(5.13) D1Φ|e =
1

2(K −m2)
, D2Φ|e = 0, D3Φ|e =

mgl

2
.
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On the other hand, by evaluating the leading principal minors of the Hessian D2E|e,
one can show that it is positive-definite if, in addition to (5.13), all the components
of the Hessian of Φ vanish except

D2
11Φ|e =

1

(K −m2)3v20
,

and also the parameter K satisfies (5.11).
This implies that one may take, e.g.,

(5.14) Φ(C1, C2, C3) =
1

2

(
(C1 − C1|e)2
(K −m2)3v20

+
C1 − C1|e
K −m2

+mgl(C3 − C3|e)
)

to satisfy the above conditions.

Remark 5.3. There must exist K satisfying (5.11) for those underwater vehicles
of interest here. In fact, one can show that m2 < m1 and m2 < m3 if the semi-major
axis of the ellipsoidal hull along E2 is longer than those along E1 and E3 as depicted
in Figure 2; see [25, Appendix B]. We would also have mi > m for any i = 1, 2, 3

(again see [25, Appendix B]) and ml2/I2 ≪ 1, and so m2 < m1 − ml2

I2
m.

As a numerical example, consider an underwater vehicle whose hull is an ellip-
soidal shell with the outer semi-major axes (a1, a2, a3) = (5, 10, 4) [m] and the inner
semi-major axes (a1 − h, a2 − h, a3 − h) with h ≃ 0.1666 [m] made of steel with den-
sity 8000 [kg/m3]. For simplicity, we assume that all extra weight is concentrated
at the point 1 meter below the center of the ellipsoids as a point mass with 40%
of the weight of the shell; hence the center of mass is at lχ with l = 2/7 [m] and
χ = (0, 0,−1) = −E3. Then the total mass of the vehicle is m = 835,245 [kg], and it
is neutrally buoyant assuming that the mass density of the water is 997 [kg/m3]—the
“thickness” h of the hull is determined that way. Using formulas from [25, Appen-
dix B], one obtains (m1,m2,m3) ≃ (1.330, 0.9860, 1.592) × 106 [kg] and (I1, I2, I3) ≃
(2.787, 0.9020, 2.527)×107 [kg ·m2]. We set K ≃ 1.239×106 so that (5.11) is satisfied.

We select an initial condition with a small perturbation to the equilibrium (5.10)
with v0 = 30 [m/s] as follows:

Ω(0) = (0.5, 0.25, 0.5), v(0) = (1.5, 30, 1.5),

Γ(0) = (cos θ0 sinφ0, sin θ0 sinφ0, cosφ0)

with θ0 = π/3 and φ0 = π/40.
Figure 5 shows the trajectories of Ω, v, and Γ for the uncontrolled and controlled

systems. The solution of the uncontrolled system (3.5) clearly shows that the equi-
librium is unstable, whereas that of the controlled system (5.1) stays close to the
equilibrium, indicating that the equilibrium is stabilized.

6. Asymptotic Stabilization.

6.1. Asymptotic Stabilization by Dissipative Control. Now we would like
to introduce an additional dissipative control to have asymptotic stabilization.

We achieve this, as in [4–6], by applying an additional control ud to the controlled
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(a) Body angular velocity Ω (b) Base velocity v in body frame (c) Vertical upward direction Γ
seen from body frame

Fig. 5. Simulation results comparing the uncontrolled underwater vehicle (3.5) (blue dashed)
and controlled underwater vehicle (5.1) (red solid) for the time interval 0 ≤ t ≤ 50.

system (5.2):

d

dt

(
∂ℓτ,σ,ρ
∂Ω

)
=

∂ℓτ,σ,ρ
∂Ω

×Ω+
∂ℓτ,σ,ρ
∂v

× v +
∂ℓτ,σ,ρ
∂Γ

× Γ,

d

dt

(
∂ℓτ,σ,ρ
∂v

)
=

∂ℓτ,σ,ρ
∂v

×Ω+ ud,

Γ̇ = Γ×Ω.

(6.1)

The system is defined on R3 ×R3 ×R3. However, since ∥Γ(t)∥ = 1 for any time t, we
consider the system on

M := R3 × R3 × S2

instead. We shall restrict functions defined on R3 × R3 × R3 to M if necessary,
but without change of notation for brevity. We will also write the state variables
as ζ = (Ω,v,Γ) for short in what follows. Then we have the following result for
asymptotic stabilization:

Theorem 6.1 (Asymptotic stabilization). Let ζe ∈ M be an equilibrium of the
uncontrolled system (3.5), and E : M → R be the Lyapunov function obtained by the
energy–Casimir method, i.e., E is an invariant of (5.2), DE(ζe) = 0, and D2E(ζe) is
positive definite. Let f : M → R3 be a smooth function, and consider the controlled
system (6.1) with the feedback ud = f(ζ):

d

dt

(
∂ℓτ,σ,ρ
∂Ω

)
=

∂ℓτ,σ,ρ
∂Ω

×Ω+
∂ℓτ,σ,ρ
∂v

× v +
∂ℓτ,σ,ρ
∂Γ

× Γ,

d

dt

(
∂ℓτ,σ,ρ
∂v

)
=

∂ℓτ,σ,ρ
∂v

×Ω+ f(Ω,v,Γ),

Γ̇ = Γ×Ω,

(6.2)

and suppose that f satisfies the following:
(i) f(ζe) = 0.
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(ii) The directional (Lie) derivative Ė of E along the solutions of (6.2) gives Ė(ζ) ≤ 0
for any ζ ∈ M .

Let Ė−1(0) :=
{
ζ ∈ M | Ė(ζ) = 0

}
, and U be an open neighborhood of ζe such that

the only invariant set of (6.2) in U ∩ Ė−1(0) is U ∩ I for some I ⊂ M . Then there
exists a compact neighborhood Σ ⊂ U of ζe such that any solution to (6.2) starting in
Σ at t = 0 approaches Σ ∩ I (which contains ζe) as t → ∞.

Proof. Let us first show that ζe is an equilibrium of the dissipative controlled
system (6.2). Recall from Section 5.1 that ζe is an equilibrium of (5.2) or equivalently
(6.1) with ud = 0. However, since f(ζe) = 0 by assumption, ζe is an equilibrium of
(6.2) as well.

Note also that E is a Lyapunov function for (6.2) as well because the only change
due to the dissipative control is that we now have Ė(ζ) ≤ 0 instead of Ė(ζ) = 0.
So it still implies the Lyapunov stability of ζe and hence the existence of a compact
neighborhood Σ ⊂ U such that any solution to (6.2) starting in Σ at t = 0 stays in Σ
for any t ≥ 0.

Therefore, LaSalle’s Invariance Principle [23] along with the assumption on the
invariant set I implies that any solution starting in Σ at t = 0 approaches Σ ∩ I as
t → ∞.

Note that ζe ∈ Ė−1(0) due to the condition (i), and so clearly ζe ∈ I because it is
an equilibrium of (6.2). Hence ζe ∈ Σ ∩ I.

6.2. Asymptotic Stabilization of Heavy Top on Movable Base. Let

(6.3) Zhtmb
e := {(Ω0E3,0,E3) | Ω0 ∈ R}

be the set of equilibria of the form (5.6). Notice that each point in this set corresponds
to the top spinning at angular velocity Ω0 in the upright position on a stationary base.

We shall prove that the solution starting near Zhtmb
e at t = 0 converges to the

point in Zhtmb
e determined by setting Ω0 equal to the initial value of Ω3; see Figure 6

below. This is not quite the asymptotic stability in the conventional sense where any
point in a neighborhood of a single equilibrium converges to that equilibrium. As we
shall explain in Remark 6.3 below, this subtlety is not a drawback of our control law,
but is rather due to a nature of this particular control system. In fact, such a subtlety
is not present in the two other examples to follow in the next subsections.

Proposition 6.2 (Asymptotic stabilization of heavy top on a movable base).
Consider the controlled system (6.1) for the heavy top on a movable base from

Example 3.2, where

(6.4) ud = N
(
v +

cmlI1
I1ϱ−m2l2

(χ×Ω)

)
=: fhtmb(ζ).

with an arbitrary negative-definite matrix N ; this is equivalent to applying to the
second equation of (3.8) the control u = up + uk + ud, where up and uk are those
from Proposition 5.1. For each ζe ∈ Zhtmb

e , there exists a compact neighborhood
Σ ⊂ R3 ×R3 × S2 of ζe such that any solution starting in Σ with Ω3(0) = Ω0 at t = 0
approaches the equilibrium (Ω0E3,0,E3) ∈ Zhtmb

e as t → ∞.

Remark 6.3. Notice that ζe may not be the same as (Ω0E3,0,E3). The reason
for this subtlety is that Ω3 is an invariant of the system even with controls. So if
Ω3(0) ̸= Ω0, then Ω3(t) would not converge to Ω0 as t → ∞. In other words, the
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Ω3

ζe

U

Ω3 = Ω0
(Ω0E3,0,E3)

Zhtmb
e

Fig. 6. Schematic of Proposition 6.2. Subset Zhtmb
e is the collection of all upright equilibria of

the top spinning with varying value of angular velocity Ω3 on stationary base. For any ζe ∈ Zhtmb
e ,

one can find a neighborhood U (ball in the figure) so that the following is satisfied: For any point
in U whose Ω3-value is Ω0, the solution starting at the point converges to equilibrium (Ω0E3,0,E3)
(upright spinning with angular velocity Ω0 on stationary base) as t → ∞.

equilibrium to converge to is determined by the initial value of Ω3 as shown in Figure 6.
We also emphasize that we would have the same issue no matter what control u one
applies to the second equation of (3.8), because it still gives Ω̇3 = 0. In other words,
one just cannot control the spinning velocity Ω3 of the top however hard one pushes
the base. So this is rather a nature of this particular control system than an issue
specific to our control law.

It is an interesting future work to look into the controllability of mechanical
systems with broken symmetry in conjunction with the stabilizability discussed here;
see Wei et al. [36] on the controllability of an aerial manipulator as an example of a
mechanical system with broken symmetry.

Proof of Proposition 6.2. Recall that our control Lyapunov function E was given
in (5.5). Taking the directional derivative (denoted by ˙( · )) of E along the vector field
of the system (6.1),

Ė = Ėτ,σ,ρ + c Ė0 + Φ̇ + ϕ̇,

and it is easy to see that ϕ̇ = ϕ′(Ω3)Ω̇3 = 0. Also, straightforward calculations yield

Ėτ,σ,ρ = v · ud, Ė0 =
I1ml

I1ϱ−m2l2
(
χ×Ω

)
· ud.

We also have Φ̇ = 0 because we have D1Φ = D2Φ = 0 (see (5.9)) as well as Ċ3 = 0.
Hence we obtain

(6.5) Ė =

(
v +

cmlI1
I1ϱ−m2l2

(χ×Ω)

)
· ud.

Let us consider the feedback control ud = fhtmb(ζ) as shown in (6.4). Then fhtmb

clearly satisfies the conditions (i) and (ii) on f stated in Theorem 6.1. Additionally,
Lemma B.1 from Appendix B says that there exists a neighborhood U of ζe such that
U ∩ Zhtmb

e is the only invariant set in U ∩ Ė−1(0).
Therefore, taking I = Zhtmb

e , Theorem 6.1 implies that there exists a compact
neighborhood Σ of ζe such that any solution starting in Σ at t = 0 approaches Σ ∩
Zhtmb

e as t → ∞. However, since Ω3 is an invariant of the system, this implies that any
solution starting in Σ with Ω3(0) = Ω0 approaches the equilibrium (Ω0E3,0,E3).
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Figure 7 shows the simulation result with the dissipative control, now with φ0 =
10
21π, i.e., the axis of the top is near the horizontal position. We see that the control
manages to steer the system towards the upright position.

�� �� �� �� ��

-���

���

(a) Body angular velocity Ω

�� �� �� �� ��

-��

-�

�

(b) Base velocity v in body frame

�� �� �� �� ��

-���

���

���

(c) Vertical upward direction Γ
seen from body frame

Fig. 7. Simulation results for the heavy top on a movable base with dissipative control; the
parameters are same as Figure 4 except that φ0 = 10

21
π (near horizontal), c = 1, and N = − 1

2
I.

The equilibrium is now asymptotically stable.

6.3. Asymptotic Stabilization of Underwater Vehicle. For the underwater
vehicle, we have the asymptotic stability in the conventional sense:

Proposition 6.4 (Asymptotic tabilization of underwater vehicle). Consider the
controlled system (6.1) for the underwater vehicle from Example 3.1 where

(6.6) ud = N
(
v + 2D1Φ(C1, C2, C3)

∂ℓτ,σ,ρ
∂v

)
=: fuwv(ζ).

with an arbitrary negative-definite matrix N ; this is equivalent to applying to the
second equation of (3.5) the control u = uk + ud, where uk is from Proposition 5.2.
Let

(6.7) Zuwv
e := {(0, v0E2,E3) | v0 ∈ R\{0}}

be the set of equilibria of the form (5.10). For each ζe ∈ Zuwv
e , use Φ from (5.14) with

C1|e = C1(ζe) and C3|e = C3(ζe) in the control (6.6). Then, there exists a compact
neighborhood Σ ⊂ R3 ×R3 × S2 of ζe such that any solution starting in Σ approaches
the equilibrium ζe as t → ∞.

Proof. Using the control Lyapunov function (5.12), we have

(6.8) Ė =

(
v + 2D1Φ(C1, C2, C3)

∂ℓτ,σ,ρ
∂v

)
· ud.

Hence we consider the feedback control ud = fuwv(ζ) as shown in (6.6). Then one
easily sees that fuwv satisfies the condition (i) on f stated in Theorem 6.1 using an
expression from (5.13) and ρ = diag(m1−K,m2−K,m3−K). It also clearly satisfies
the other condition (ii) by construction.

The rest of the argument is essentially the same as the proof of Proposition 6.2
using Lemma B.2; note however that Lemma B.2 says that the invariant set I is the
equilibrium ζe itself as opposed to a family of equilibria. Hence Theorem 6.1 with
I = {ζe} gives the desired result.

See Figure 8 for the simulation result with the dissipative control. We see that
the initial disturbance is damped out so that the solution approaches the equilibrium
asymptotically.
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Fig. 8. Time evolution of underwater vehicle with dissipative control with N = − diag(2, 1, 2)×
106. Note that v is plotted for a shorter time interval because it is damped much faster than the
other two quantities.

m

l

M
e1

e2

e3

x

E1

E2

E3

u

Fig. 9. Spherical pendulum on a movable base. We would like to swing up the pendulum from
the (almost) vertical downward position to the upright position by applying a control to the base.

6.4. Swinging Up the Spherical Pendulum. As an application of the same
control law to a problem with a slightly different flavor, let us consider the problem
of swinging up a spherical pendulum on a movable base; see Figure 9.

Following [38], we treat the pendulum as a degenerate top that does not rotate
about its rod. Specifically, we set the third components of the inertia tensor I and
of the angular velocity Ω to zero, i.e., I3 = 0 and Ω3 = 0. Assuming that the rod
is massless and denoting the bob mass by m and the pendulum length by l, the
inertia tensor I becomes I =

[
I1 0
0 I1

]
=
[
ml2 0
0 ml2

]
because we got rid of Ω3 from the

formulation.
Since this is the special case of the heavy top with I1 = I2 = ml2, we have the same

stability condition under this simplification. Specifically, we can achieve stability for
any ϱ ∈ (0,m). Furthermore, since Ω3 = 0 here, the set of equilibria Zhtmb

e from (6.3)
becomes a single point. Hence Proposition 6.2 applied to this special case implies the
asymptotic stability in the conventional sense: The solution approaches the upright
equilibrium as t → ∞.

Figure 10 shows the results of simulations. Note that the initial condition is
chosen so that the pendulum is almost downward (φ0 = 0.99π) as opposed to exactly
downward (φ0 = π or Γ(0) = (0, 0,−1)) because the exact downward position is an
equilibrium of the controlled system. One sees that the pendulum is swung up and
asymptotically stabilized towards the upright position.

Acknowledgments. We would like to thank Mark Spong for the helpful com-
ments and discussions, Scott Kelly for suggesting us the application to the problem
of swinging up the pendulum, and the reviewers for their comments and constructive
criticisms.
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Fig. 10. Simulation results for swinging up spherical pendulum on a movable base with M =
0.44 [kg], m = 0.14 [kg], l = 0.215 [m] (taken from [4]), and ϱ = 0.9m with initial condition Ω(0) = 0,
v(0) = 0, and Γ(0) = (cos θ0 sinφ0, sin θ0 sinφ0, cosφ0) with θ0 = π/3 and φ0 = 0.99π, i.e., Γ(0) is
near the vertical downward position (0, 0,−1); also c = 1 and N = −I for dissipative control. The
pendulum is swung up and asymptotically approaches the upright position Γ = (0, 0, 1).

Appendix A. Semidirect Product SE(3) ⋉ R4. This appendix gives a
brief summary of the semidirect product Lie groups SE(3)⋉R4 and SE(3)⋉R3 used
throughout the paper.

A.1. SE(3)-action on R4. Let κ : SE(3) → GL(R4) be the left representation
of SE(3) on R4 defined by the standard matrix-vector multiplication: Writing s =
(R,x) =

[
R x
0T 1

]
,

(A.1) κ(s)y = sy =

[
R x
0T 1

] [
y
ỹ

]
=

[
Ry + ỹx

ỹ

]
.

We note in passing that it was also used in the optimal-control formulation of the
Kirchhoff elastic rod under gravity by Borum and Bretl [7, 8].

Let (R4)∗ be the dual of R4. We identify (R4)∗ with R4 via the dot product
⟨v, w⟩ := v · w. Then the induced left representation κ∗ : SE(3) → GL

(
(R4)∗

)
is

defined as

⟨κ∗(s)Γ, y⟩ :=
〈
κ(s−1)∗Γ, y

〉
=
〈
Γ, κ(s−1)y

〉
=
〈
Γ, s−1y

〉
=
〈
s−TΓ, y

〉
,

and therefore, writing Γ = (Γ, h) ∈ (R4)∗, we have

(A.2) κ∗(s)Γ = s−TΓ =

[
R 0

−xTR 1

] [
Γ
h

]
=

[
RΓ

−xTRΓ+ h

]
.

We may identify the Lie algebra se(3) = so(3) ⋉ R3 with R3 × R3 via the hat
map (2.6): [

Ω̂ v
0T 0

]
∈ se(3) ↔ (Ω,v) ∈ R3 × R3.

Then we may write the induced action of se(3) on R4 as

(A.3) κ′(Ω,v)y =

[
Ω̂ v
0T 0

] [
y
ỹ

]
=

[
Ω̂y + ỹv

0

]
=

[
Ω× y + ỹv

0

]
.

This induces the Lie algebra action on the dual (R4)∗ as follows:

⟨κ′(Ω,v)∗Γ, y⟩ = ⟨Γ, κ′(Ω,v)y⟩ = Γ · (Ω× y + ỹv) = (Γ×Ω) · y + (Γ · v)ỹ
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that is,

(A.4) κ′(Ω,v)∗Γ =

[
Γ×Ω
Γ · v

]
.

For any y ∈ R4, define a linear map κy : se(3) → R4 by

κy(Ω,v) := κ′(Ω,v)y =

[
Ω× y + ỹv

0

]
.

Using its dual κ∗
y : (R4)∗ → se(3)∗, we define the momentum map K : R4 × (R4)∗ →

se(3)∗ as

K(y,Γ) := κ∗
y(Γ).

To make it more concrete, let us identify se(3)∗ with se(3) via the following inner
product on se(3):

⟨(Ω,v), (Ξ,w)⟩ := Ω ·Ξ+ v ·w.

Then we have, for any (Ω,v) ∈ se(3) and (y,Γ) ∈ R4 × (R4)∗,

⟨K(y,Γ), (Ω,v)⟩ =
〈
κ∗
y(Γ), (Ω,v)

〉
= ⟨Γ, κy(Ω,v)⟩
= Γ · (Ω× y + ỹv) = (y × Γ) ·Ω+ (ỹΓ) · v,

which gives

(A.5) K(y,Γ) = (y × Γ, ỹΓ).

A.2. SE(3)-action on R3. Setting ỹ = 0 above yields the representation

(A.6) κ : SE(3) → GL(R3); κ(s)y = κ(R,x)y = Ry.

Note that this is not the standard SE(3)-action on R3 by rotation and translation.
As a result, we have

(A.7)
κ∗(R,x)Γ = RΓ, κ′(Ω,v)y = κy(Ω,v) = Ω× y,

κ′(Ω,v)∗Γ = Γ×Ω, K(y,Γ) = y × Γ.

A.3. Lie brackets and coadjoint operator. Let us find the Lie bracket as-
sociated with the semidirect product Lie algebra se(3) ⋉ R4. Let (ζ1, w1), (ζ2, w2) ∈
se(3)⋉R4, where

(ζ1, w1) =
(
(Ω1,v1), (w1, w̃1)

)
, (ζ2, w2) =

(
(Ω2,v2), (w2, w̃2)

)
.

Then, the Lie bracket is given by, using κ′ from (A.3) (see also (2.1)),

[(ζ1, w1), (ζ2, w2)] = ad(ζ1,w1)(ζ2, w2) =
(
[ζ1, ζ2], κ

′(ζ1)w2 − κ′(ζ2)w1

)
=
([

(Ω1,v1), (Ω2,v2)
]
, κ′(Ω1,v1)(w2, w̃2)− κ′(Ω2,v2)(w1, w̃1)

)
=
((

Ω1 ×Ω2,Ω1 × v2 −Ω2 × v1

)
,

(Ω1 ×w2 + w̃2v1 −Ω2 ×w1 − w̃1v2, 0)
)
,

and for se(3)⋉R3,[(
ζ1,w1

)
,
(
ζ2,w2

)]
=
((

Ω1 ×Ω2,Ω1 × v2 −Ω2 × v1

)
,Ω1 ×w2 −Ω2 ×w1

)
.



24 C. CONTRERAS AND T. OHSAWA

A.4. Lie–Poisson brackets on (se(3) ⋉ R4)∗ and (se(3) ⋉ R3)∗. Using coor-
dinates

(µ,Γ) = ((Π,P), (Γ, h))

for (se(3) ⋉ R4)∗ ∼= R3 × R3 × R4, the (−)-Lie–Poisson bracket on (se(3) ⋉ R4)∗ is
given by

{F,G} (µ,Γ) = −
〈
(µ,Γ),

[
δF

δ(µ,Γ)
,

δG

δ(µ,Γ)

]〉
,

where, using the Lie brackets from the previous subsection,[
δF

δ(µ,Γ)
,

δG

δ(µ,Γ)

]
=

((
∂F

∂Π
× ∂G

∂Π
,
∂F

∂Π
× ∂G

∂P
− ∂G

∂Π
× ∂F

∂P

)
,

(
∂F

∂Π
× ∂G

∂Γ
+

∂G

∂h

∂F

∂P
− ∂G

∂Π
× ∂F

∂Γ
− ∂F

∂h

∂G

∂P
, 0

))
.

Hence more concretely,

{F,G} ((Π,P), (Γ, h)) = −Π ·
(
∂F

∂Π
× ∂G

∂Π

)
−P ·

(
∂F

∂Π
× ∂G

∂P
− ∂G

∂Π
× ∂F

∂P

)
− Γ ·

(
∂F

∂Π
× ∂G

∂Γ
+

∂G

∂h

∂F

∂P
− ∂G

∂Π
× ∂F

∂Γ
− ∂F

∂h

∂G

∂P

)
.

Then, one easily sees that C1 = ∥Γ∥2 and C2 = ∥P×Γ∥2 are Casimirs, i.e., {F,Ci} = 0
for any F ∈ C∞((se(3)⋉R4)∗

)
and i = 1, 2.

On the other hand, the Lie–Poisson bracket on (se(3)⋉R3)∗ is

{F,G}((Π,P),Γ) = −Π ·
(
∂F

∂Π
× ∂G

∂Π

)
−P ·

(
∂F

∂Π
× ∂G

∂P
− ∂G

∂Π
× ∂F

∂P

)
− Γ ·

(
∂F

∂Π
× ∂G

∂Γ
− ∂G

∂Π
× ∂F

∂Γ

)
.

In this case, we have an additional Casimir:

(A.8) C1 = ∥P∥2, C2 = P · Γ, C3 = ∥Γ∥2.

Appendix B. Some Lemmas on Invariant Sets.

Lemma B.1. Consider the system (6.1) with the dissipative control (6.4) for the
heavy top on a movable base (Example 3.2), and define the set

Ė−1(0) :=
{
ζ ∈ R3 × R3 × S2 | Ė(ζ) = 0

}
with the Lyapunov function (5.5). Then, for each equilibrium ζe ∈ Zuwv

e (defined
in (6.3)), there exists an open neighborhood U of ζe such that the only invariant set
inside U ∩ Ė−1(0) is U ∩ Zhtmb

e .

Proof. In view of (6.4) and (6.5), we have

Ė =

(
v +

cmlI1
I1ϱ−m2l2

(χ×Ω)

)T

N
(
v +

cmlI1
I1ϱ−m2l2

(χ×Ω)

)
,
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and since N is assumed to be negative-definite,

(B.1) Ė(ζ) = 0 ⇐⇒ v = − cmlI1
I1ϱ−m2l2

(χ×Ω) ⇐⇒ fhtmb(ζ) = 0.

Since χ = (0, 0, 1), this implies that v3 = 0. But then the equations of motion
satisfying (B.1) gives

v̇3 = ml
(1 + c)I1ϱ−m2l2

I1ϱ−m2l2
(Ω2

1 +Ω2
2).

The fraction on the right-hand side is non-zero because of the condition on ϱ from
(5.8). Hence the solution in the invariant set necessarily satisfies Ω1 = Ω2 = 0. It also
implies via (B.1) that v1 = v2 = 0 as well, i.e., v = 0. Then the equations of motion
now give

Ω̇1 = mglΓ2, Ω̇2 = −mglΓ1.

However, since Ω1 = Ω2 = 0, we have Γ1 = Γ2 = 0, and hence Γ3 = ±1 because
∥Γ∥ = 1. We may then take a neighborhood U of ζe to exclude Γ3 = −1. As a result,
Γ = (0, 0, 1), and thus U ∩ Zhtmb

e is the only invariant set in U ∩ Ė−1(0).

Lemma B.2. Consider the system (6.1) with the dissipative control (6.6) for the
underwater vehicle (Example 3.1), and define the set Ė−1(0) with the Lyapunov func-
tion E from (5.12). Then, for each equilibrium ζe ∈ Zuwv

e (defined in (6.7)), there
exists an open neighborhood U of ζe such that the only invariant set inside U ∩Ė−1(0)
is {ζe}.

Proof. In view of (6.6) and (6.8), one sees

Ė(ζ) = 0 ⇐⇒ v = −2D1Φ(C1, C2, C3)
∂ℓτ,σ,ρ
∂v

⇐⇒ fuwv(ζ) = 0.

However, using (5.14),

D1Φ(C1, C2, C3) =
C1 − C1|e

(K −m2)3v20
+

1

2(K −m2)
.

Also, using the expression for C1 in (5.4) and (6.2), we see that

Ċ1 = 2
∂ℓτ,σ,ρ
∂v

· fuwv(ζ) = 0,

because we have fuwv(ζ) = 0 now. Hence D1Φ(C1, C2, C3) is constant if Ė = 0. Now,
since

∂ℓτ,σ,ρ
∂v

= ρv +ml(Ω× χ),

with ρ = diag(m1 −K,m2 −K,m3 −K), we have

(B.2) v = −2D1Φ(C1, C2, C3)(ρv +ml(Ω× χ))

⇐⇒ (I + 2D1Φ(C1, C2, C3)ρ)v = −2mlD1Φ(C1, C2, C3)(Ω× χ).
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Particularly, since χ = (0, 0,−1), the second and third components give

C1 − C1|e
(K −m2)2v20

v2 = −ml

(
C1 − C1|e

(K −m2)3v20
+

1

2(K −m2)

)
Ω1, v3 = 0.

In what follows, we consider two cases depending on the value of C1, which takes
the form

C1 = ((m1 −K)v1 −mlΩ2)
2
+ ((m2 −K)v2 +mlΩ1)

2
+ ((m3 −K)v3)

2
.

Case 1: C1 ̸= C1|e
In this case, one may use (B.2) to express Ω1 and Ω2 as constant multiples of v2
and v1, respectively. Then the equations of motion give

(B.3)
d

dt

[
v1
v2

]
=

v20(K −m2)
3

2C1 − (K −m2)2v20
Ω3

[
−v2
v1

]
.

and hence

(B.4) v21 + v22 = v̄2 for some v̄ ∈ R.

It also gives

v̇3 = a1v
2
1 + a2v

2
2

with some constants a1, a2 ∈ R with a1 ̸= a2. However, because v3 = 0, we have
a1v

2
1+a2v

2
2 = 0; this along with (B.4) then implies that both v1 and v2 are constant.

Therefore, the right-hand side of (B.3) vanishes, i.e., either Ω3 ̸= 0 and v1 = v2 = 0
or Ω3 = 0.
In the former case, we also have Ω1 = Ω2 = 0, and this implies that C1 = 0.
Therefore, we may take a small enough neighborhood U of the equilibrium (at
which C1 = C1|e = (K −m2)

2v20 > 0) so that C1 > 0 on U to exclude this case.
In the latter case, setting Ω3 = 0 gives

Ω̇1 = −mglΓ2, Ω̇2 = mglΓ1.

However, since Ω1 and Ω2 are constant, we have Γ1 = Γ2 = 0, and so Γ3 = ±1.
Either way, setting v̇1 = v̇2 = 0 again leads to v1 = v2 = 0 because of (B.3), and
hence Ω1 = Ω2 = 0. As a result, C1 = 0 again and so we may exclude this case as
well.

Case 2: Case 2: C1 = C1|e
In this case, (B.2) gives

Ω1 = 0, Ω2 =
m1 −m2

ml
v1, v3 = 0,

and as a result, the equations of motion satisfying (B.2) gives

v̇3 =
(m1 −m2)(m2 −K)

ml
v21 .

Since m1 ̸= m2 for our case and K > m2 because of (5.11) as well as v3 = 0, it
follows that v1 = 0, and hence Ω2 = 0 as well. This in turn implies

Ω̇1 = −mglΓ2, Ω̇2 = ml(gΓ1 − v2Ω3), v̇1 = (m2 −K)v2Ω3.
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The first equation with Ω1 = 0 from above implies Γ2 = 0. The second with Ω2 = 0
implies v2Ω3 = gΓ1, and substituting this to the last equation from above,

v̇1 = (m2 −K)gΓ1,

but then, since v1 = 0, we have Γ1 = 0, and so v2Ω3 = 0 as well. Since Γ1 = Γ2 = 0,
we have Γ3 = ±1. Taking a small enough neighborhood U of the equilibrium to
exclude Γ3 = −1, we have Γ3 = 1. Now, since v1 = v3 = Ω1 = Ω2 = 0, we have
C1 = (K −m2)

2v22 . However, we are assuming that C1 = C1|e = (K −m2)
2v20 , we

have v2 = ±v0 ̸= 0. Again, taking U small enough, we have v2 = v0.
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