Fundamentals of Microelectronics

- CH1 Why Microelectronics?
- CH2 Basic Physics of Semiconductors
- CH3 Diode Circuits
- > CH4 Physics of Bipolar Transistors
- CH5 Bipolar Amplifiers
- CH6 Physics of MOS Transistors
- CH7 CMOS Amplifiers
- CH8 Operational Amplifier As A Black Box

1

Chapter 6 Physics of MOS Transistors

- 6.1 Structure of MOSFET
- 6.2 Operation of MOSFET
- > 6.3 MOS Device Models
- > 6.4 PMOS Transistor
- > 6.5 CMOS Technology
- 6.6 Comparison of Bipolar and CMOS Devices

Chapter Outline

Operation of MOSFETs

MOS Device Models

PMOS Devices

- MOS Structure
- Operation in Triode Region
- Operation in Saturation
- I/V Characteristics
- Large-Signal Model
- Small-Signal Model
- Structure
- Models

CH 6 Physics of MOS Transistors

3

Metal-Oxide-Semiconductor (MOS) Capacitor

The MOS structure can be thought of as a parallel-plate capacitor, with the top plate being the positive plate, oxide being the dielectric, and Si substrate being the negative plate. (We are assuming P-substrate.)

CH 6 Physics of MOS Transistors

Voltage-Controlled Attenuator

- > As the gate voltage decreases, the output drops because the channel resistance increases.
- This type of gain control finds application in cell phones to avoid saturation near base stations.

CH 6 Physics of MOS Transistors

9

Channel Charge Density

$$Q = WC_{ox}(V_{GS} - V_{TH})$$

➤ The channel charge density is equal to the gate capacitance times the gate voltage in excess of the threshold voltage.

CH 6 Physics of MOS Transistors

15

Charge Density at a Point

 $Q(x) = WC_{ox}[V_{GS} - V(x) - V_{TH}]$

Let x be a point along the channel from source to drain, and V(x) its potential; the expression above gives the charge density (per unit length).

CH 6 Physics of MOS Transistors

Charge Density and Current

$$I = Q \cdot v$$

The current that flows from source to drain (electrons) is related to the charge density in the channel by the charge velocity.

CH 6 Physics of MOS Transistors

17

Drain Current

$$v = +\mu_{n} \frac{dV}{dx}$$

$$I_{D} = WC_{ox}[V_{GS} - V(x) - V_{TH}]\mu_{n} \frac{dV(x)}{dx}$$

$$I_{D} = \frac{1}{2}\mu_{n}C_{ox} \frac{W}{L}[2(V_{GS} - V_{TH})V_{DS} - V_{DS}^{2}]$$

CH 6 Physics of MOS Transistors

How to Determine 'Region of Operation'

- When the potential difference between gate and drain is greater than V_{TH}, the MOSFET is in triode region.
- When the potential difference between gate and drain becomes equal to or less than V_{TH}, the MOSFET enters saturation region.

CH 6 Physics of MOS Transistors

25

Triode or Saturation?

$$V_{DD} = 1.8 \text{ V}$$

$$R_{D} \ge 5 \text{ k}\Omega$$

$$I_{D} = 1.8 \text{ V}$$

When the region of operation is not known, a region is assumed (with an intelligent guess). Then, the final answer is checked against the assumption.

CH 6 Physics of MOS Transistors

Channel-Length Modulation

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^{2} (1 + \lambda V_{DS})$$

The original observation that the current is constant in the saturation region is not quite correct. The end point of the channel actually moves toward the source as V_D increases, increasing I_D. Therefore, the current in the saturation region is a weak function of the drain voltage.

CH 6 Physics of MOS Transistors

2

λ and L

- Unlike the Early voltage in BJT, the channel- length modulation factor can be controlled by the circuit designer.
- For long L, the channel-length modulation effect is less than that of short L.

CH 6 Physics of MOS Transistors

_					
Tra	no	\sim	na	n	\sim
	_				

W/L Constant V _{GS} −V _{TH} Variable	W/L Variable V _{GS} −V _{TH} Constant	$\frac{W}{L}$ Variable $V_{GS} - V_{TH}$ Constant
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	$g_{ m m}^{} \propto I_{ m D}^{}$ $g_{ m m}^{} \propto rac{W}{L}^{}$	$g_{ m m} \propto \sqrt{rac{W}{L}}$ $g_{ m m} \propto rac{1}{V_{ m GS} - V_{ m TH}}$

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \qquad g_{m} = \sqrt{2\mu_{n} C_{ox} \frac{W}{L} I_{D}} \qquad g_{m} = \frac{2I_{D}}{V_{GS} - V_{TH}}$$

- Transconductance is a measure of how strong the drain current changes when the gate voltage changes.
- > It has three different expressions.

CH 6 Physics of MOS Transistors

29

Doubling of $g_{\rm m}$ Due to Doubling W/L

If W/L is doubled, effectively two equivalent transistors are added in parallel, thus doubling the current (if V_{GS}-V_{TH} is constant) and hence g_m.

CH 6 Physics of MOS Transistors

Velocity Saturation

$$\begin{pmatrix}
I_D = V_{sat} \cdot Q = V_{sat} \cdot WC_{ox} (V_{GS} - V_{TH}) \\
g_m = \frac{\partial I_D}{\partial V_{GS}} = V_{sat} WC_{ox}
\end{pmatrix}$$

- Since the channel is very short, it does not take a very large drain voltage to velocity saturate the charge particles.
- In velocity saturation, the drain current becomes a linear function of gate voltage, and gm becomes a function of W.

CH 6 Physics of MOS Transistors

3

Body Effect

$$V_{TH} = V_{TH \ 0} + \rho \left(\sqrt{2\phi_F + V_{SB}} - \sqrt{2\phi_F} \right)$$

As the source potential departs from the bulk potential, the threshold voltage changes.

CH 6 Physics of MOS Transistors

Large-Signal Models

 $V_{\rm GS} > V_{\rm TH}$

$$V_{DS} > V_{GS} - V_{TH}$$

$$G \circ \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^{2} (1 + \lambda V_{DS})$$

$$V_{GS} > V_{TH}$$

$$V_{DS} < V_{GS} - V_{TH}$$

$$V_{DS} < V_{GS} - V_{TH}$$

$$V_{DS} < 2 (V_{GS} - V_{TH})$$

$$G \circ \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} [2 (V_{GS} - V_{TH}) V_{DS} + V_{DS}^{2}]$$

$$G \circ \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} [V_{GS} - V_{TH}) V_{DS} + V_{DS}^{2}]$$

Based on the value of V_{DS}, MOSFET can be represented with different large-signal models.

CH 6 Physics of MOS Transistors

33

Example: Behavior of I_D with V₁ as a Function

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{DD} - V_{1} - V_{TH})^{2}$$

Since V₁ is connected at the source, as it increases, the current drops.

CH 6 Physics of MOS Transistors

Small-Signal Model

- When the bias point is not perturbed significantly, small-signal model can be used to facilitate calculations.
- > To represent channel-length modulation, an output resistance is inserted into the model.

CH 6 Physics of MOS Transistors

35

PMOS Transistor

- Just like the PNP transistor in bipolar technology, it is possible to create a MOS device where holes are the dominant carriers. It is called the PMOS transistor.
- It behaves like an NMOS device with all the polarities reversed.

CH 6 Physics of MOS Transistors

PMOS Equations

$$\begin{split} I_{D,sat} &= \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 - \lambda V_{DS}) \\ I_{D,tri} &= \frac{1}{2} \mu_p C_{ox} \frac{W}{L} [2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2] \\ I_{D,sat} &= \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (|V_{GS}| - |V_{TH}|)^2 (1 + \lambda |V_{DS}|) \\ I_{D,tri} &= \frac{1}{2} \mu_p C_{ox} \frac{W}{L} [2(|V_{GS}| - |V_{TH}|) V_{DS} | - V_{DS}^2] \end{split}$$

CH 6 Physics of MOS Transistors

3

Small-Signal Model of PMOS Device

The small-signal model of PMOS device is identical to that of NMOS transistor; therefore, R_{χ} equals R_{γ} and hence $(1/gm)||r_{o}$.

CH 6 Physics of MOS Transistors

Bipolar TransistorMOSFETExponential Characteristic
Active: $V_{CB} > 0$
Saturation: $V_{CB} < 0$
Finite Base Current
Early Effect
Diffusion CurrentQuadratic Characteristic
Saturation: $V_{DS} > V_{GS} - V_{TH}$
Triode: $V_{DS} < V_{GS} - V_{TH}$
Zero Gate Current
Channel-Length Modulation
Drift Current

Voltage-Dependent Resistor

Comparison of Bipolar and MOS Transistors

Bipolar devices have a higher g_m than MOSFETs for a given bias current due to its exponential IV characteristics.

CH 6 Physics of MOS Transistors