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> The MOS structure can be thought of as a parallel-plate
. capacitor, with the top plate being the positive plate, oxide
being the dielectric, and Si substrate being the negative
plate. (We are assuming P-substrate.)
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» This device is symmetric, so either of the n+ regions can be
. source or drain.
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» The gate is formed by polysilicon, and the insulator by
Silicon dioxide.
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> First, the holes are repelled by the positive gate voltage,
leaving behind negative ions and forming a depletion
region. Next, electrons are attracted to the interface,
creating a channel (“inversion layer”).
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» The inversion channel of a MOSFET can be seen as a
resistor.

» Since the charge density inside the channel depends on the
gate voltage, this resistance is also voltage-dependent.
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> As the gate voltage decreases, the output drops because
the channel resistance increases.

» This type of gain control finds application in cell phones to
avoid saturation near base stations.
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» The MOS characteristics are measured by varying Vg while
keeping Vp constant, and varying Vp while keeping Vg
constant.

» (d) shows the voltage dependence of channel resistance.
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» Small gate length and oxide thickness yield low channel
resistance, which will increase the drain current.
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> As the gate width increases, the current increases due to a
. decrease in resistance. However, gate capacitance also
increases thus, limiting the speed of the circuit.

> An increase in W can be seen as two devices in parallel.
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» Since there’s a channel resistance between drain and
source, and if drain is biased higher than the source,
channel potential increases from source to drain, and the
potential between gate and channel will decrease from
source to drain.
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» When Vp—- Vg =V, the channel at drain totally pinches off, and
when Vp - Vg > Vg, the channel length starts to decrease.

> As the potential difference between drain and gate becomes more
positive, the inversion layer beneath the interface starts to pinch
off around drain.
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» The channel charge density is equal to the gate capacitance
times the gate voltage in excess of the threshold voltage.
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> Let x be a point along the channel from source to drain, and
. V(x) its potential; the expression above gives the charge
density (per unit length).
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> The current that flows from source to drain (electrons) is
. related to the charge density in the channel by the charge
velocity.
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> By keeping Vg constant and varying Vg, we obtain a
parabolic relationship.

» The maximum current occurs when Vg equals to Vgg- Vip.
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» At small Vpg, the transistor can be viewed as a resistor,
with the resistance depending on the gate voltage.

> Itfinds application as an electronic switch.
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» In a cordless telephone system in which a single antenna is
. used for both transmission and reception, a switch is used
to connect either the receiver or transmitter to the antenna.
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» To minimize signal attenuation, R, of the switch has to be
. as small as possible. This means larger W/L aspect ratio
and greater Vgs.
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> When the potential difference between gate and drain is
. greater than V;,, the MOSFET is in triode region.

» When the potential difference between gate and drain
. becomes equal to or less than V;;,, the MOSFET enters

. saturation region.
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» When the region of operation is not known, a region is
assumed (with an intelligent guess). Then, the final answer
is checked against the assumption.
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- » The original observation that the current is constant in the

. saturation region is not quite correct. The end point of the
channel actually moves toward the source as Vj increases,
increasing I,. Therefore, the current in the saturation
region is a weak function of the drain voltage.
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» Unlike the Early voltage in BJT, the channel- length
:  modulation factor can be controlled by the circuit designer.

» Forlong L, the channel-length modulation effect is less
. than that of short L.
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» Transconductance is a measure of how strong the drain
current changes when the gate voltage changes.
> It has three different expressions.
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> If W/L is doubled, effectively two equivalent transistors are

added in parallel, thus doubling the current (if Vgg-Vy4 is
constant) and hence g,;,.

CH 6 Physics of MOS Transistors

30

11/13/2010

15



I =V " Q = vsat : WCox (VGS _VTH )

D sat
ol
g m = . = vsatWCox
a GS

> Since the channel is very short, it does not take a very large
drain voltage to velocity saturate the charge particles.

» Invelocity saturation, the drain current becomes a linear
function of gate voltage, and gm becomes a function of W.
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> As the source potential departs from the bulk potential, the
threshold voltage changes.
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> Based on the value of Vo MOSFET can be represented
with different large-signal models.
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» Since V, is connected at the source, as it increases, the
. current drops.
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> When the bias point is not perturbed significantly, small-
. signal model can be used to facilitate calculations.

. > Torepresent channel-length modulation, an output

. resistance is inserted into the model.
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» Just like the PNP transistor in bipolar technology, it is
. possible to create a MOS device where holes are the

. dominant carriers. ltis called the PMOS transistor.
> Itbehaves like an NMOS device with all the polarities

. reversed.
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» The small-signal model of PMOS device is identical to that
of NMOS transistor; therefore, Ry equals Ry and hence
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> Itpossible to grow an n-well inside a p-substrate to create a
. technology where both NMOS and PMOS can coexist. :

> Itis known as CMOS, or “Complementary MOS”.
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Bipolar Transistor

MOSFET

Exponential Characteristic
Active: Veg >0
Saturation: Veg <0
Finite Base Current
Early Effect
Diffusion Current

Quadratic Characteristic
Saturation: Vpg > Vgg— Vo
Triode: Vg < Ves— Vry
Zero Gate Current
Channel-Length Modulation
Drift Current
Voltage-Dependent Resistor

> Bipolar devices have a higher g,, than MOSFETSs for a given
. bias current due to its exponential IV characteristics.
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